Some mathematicians defined this type incomplete-version of Bessel function or this type generalized-version of incomplete gamma function :
K
v
(
x
,
y
)
=
∫
1
∞
e
−
x
t
−
y
t
t
v
+
1
d
t
{\displaystyle K_{v}(x,y)=\int _{1}^{\infty }{\frac {e^{-xt-{\frac {y}{t}}}}{t^{v+1}}}~dt}
γ
(
α
,
x
;
b
)
=
∫
0
x
t
α
−
1
e
−
t
−
b
t
d
t
{\displaystyle \gamma (\alpha ,x;b)=\int _{0}^{x}t^{\alpha -1}e^{-t-{\frac {b}{t}}}~dt}
Γ
(
α
,
x
;
b
)
=
∫
x
∞
t
α
−
1
e
−
t
−
b
t
d
t
{\displaystyle \Gamma (\alpha ,x;b)=\int _{x}^{\infty }t^{\alpha -1}e^{-t-{\frac {b}{t}}}~dt}
Properties
K
v
(
x
,
y
)
=
x
v
Γ
(
−
v
,
x
;
x
y
)
{\displaystyle K_{v}(x,y)=x^{v}\Gamma (-v,x;xy)}
K
v
(
x
,
y
)
+
K
−
v
(
y
,
x
)
=
2
x
v
2
y
v
2
K
v
(
2
x
y
)
{\displaystyle K_{v}(x,y)+K_{-v}(y,x)={\frac {2x^{\frac {v}{2}}}{y^{\frac {v}{2}}}}K_{v}(2{\sqrt {xy}})}
γ
(
α
,
x
;
0
)
=
γ
(
α
,
x
)
{\displaystyle \gamma (\alpha ,x;0)=\gamma (\alpha ,x)}
Γ
(
α
,
x
;
0
)
=
Γ
(
α
,
x
)
{\displaystyle \Gamma (\alpha ,x;0)=\Gamma (\alpha ,x)}
γ
(
α
,
x
;
b
)
+
Γ
(
α
,
x
;
b
)
=
2
b
α
2
K
α
(
2
b
)
{\displaystyle \gamma (\alpha ,x;b)+\Gamma (\alpha ,x;b)=2b^{\frac {\alpha }{2}}K_{\alpha }(2{\sqrt {b}})}
One of the advantage of defining this type incomplete-version of Bessel function
K
v
(
x
,
y
)
{\displaystyle K_{v}(x,y)}
is that even for example the associated Anger–Weber function defined in Digital Library of Mathematical Functions can related:
A
ν
(
z
)
=
1
π
∫
0
∞
e
−
ν
t
−
z
sinh
t
d
t
=
1
π
∫
0
∞
e
−
(
ν
+
1
)
t
−
z
e
t
2
+
z
2
e
t
d
(
e
t
)
=
1
π
∫
1
∞
e
−
z
t
2
+
z
2
t
t
ν
+
1
d
t
=
1
π
K
ν
(
z
2
,
−
z
2
)
{\displaystyle \mathbf {A} _{\nu }(z)={\frac {1}{\pi }}\int _{0}^{\infty }e^{-\nu t-z\sinh t}~dt={\frac {1}{\pi }}\int _{0}^{\infty }e^{-(\nu +1)t-{\frac {ze^{t}}{2}}+{\frac {z}{2e^{t}}}}~d(e^{t})={\frac {1}{\pi }}\int _{1}^{\infty }{\frac {e^{-{\frac {zt}{2}}+{\frac {z}{2t}}}}{t^{\nu +1}}}~dt={\frac {1}{\pi }}K_{\nu }\left({\frac {z}{2}},-{\frac {z}{2}}\right)}
Recurrence relations
K
v
(
x
,
y
)
{\displaystyle K_{v}(x,y)}
satisfy this recurrence relation :
x
K
v
−
1
(
x
,
y
)
+
v
K
v
(
x
,
y
)
−
y
K
v
+
1
(
x
,
y
)
=
e
−
x
−
y
{\displaystyle xK_{v-1}(x,y)+vK_{v}(x,y)-yK_{v+1}(x,y)=e^{-x-y}}
References
"incompleteBesselK function | R Documentation" . www.rdocumentation.org .
"incompleteBesselK: The Incomplete Bessel K Function in DistributionUtils: Distribution Utilities" . rdrr.io .
Harris, Frank E. (2008). "Incomplete Bessel, generalized incomplete gamma, or leaky aquifer functions" (PDF). Journal of Computational and Applied Mathematics . 215 : 260–269. doi :10.1016/j.cam.2007.04.008 . Retrieved 2020-01-08.
"Generalized incomplete gamma function and its application" . 2018-01-14. Retrieved 2020-01-08.
Didem Aşçıoğlu (September 2015). The Generalized Incomplete Gamma Functions (PDF) (Master thesis). Eastern Mediterranean University. S2CID 126117454 . Archived from the original (PDF) on 2019-12-23. Retrieved 2019-12-23 – via Semantic Scholar.
Paris, R. B. (2010), "Anger-Weber Functions" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Categories :
Incomplete Bessel
K function/generalized incomplete gamma function
Add topic
Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.
**DISCLAIMER** We are not affiliated with Wikipedia, and Cloudflare.
The information presented on this site is for general informational purposes only and does not constitute medical advice.
You should always have a personal consultation with a healthcare professional before making changes to your diet, medication, or exercise routine.
AI helps with the correspondence in our chat.
We participate in an affiliate program. If you buy something through a link, we may earn a commission 💕
↑