Misplaced Pages

Infinite divisibility (probability)

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Infinitely divisible probability distribution)

In probability theory, a probability distribution is infinitely divisible if it can be expressed as the probability distribution of the sum of an arbitrary number of independent and identically distributed (i.i.d.) random variables. The characteristic function of any infinitely divisible distribution is then called an infinitely divisible characteristic function.

More rigorously, the probability distribution F is infinitely divisible if, for every positive integer n, there exist n i.i.d. random variables Xn1, ..., Xnn whose sum Sn = Xn1 + ... + Xnn has the same distribution F.

The concept of infinite divisibility of probability distributions was introduced in 1929 by Bruno de Finetti. This type of decomposition of a distribution is used in probability and statistics to find families of probability distributions that might be natural choices for certain models or applications. Infinitely divisible distributions play an important role in probability theory in the context of limit theorems.

Examples

Examples of continuous distributions that are infinitely divisible are the normal distribution, the Cauchy distribution, the Lévy distribution, and all other members of the stable distribution family, as well as the Gamma distribution, the chi-square distribution, the Wald distribution, the Log-normal distribution and the Student's t-distribution.

Among the discrete distributions, examples are the Poisson distribution and the negative binomial distribution (and hence the geometric distribution also). The one-point distribution whose only possible outcome is 0 is also (trivially) infinitely divisible.

The uniform distribution and the binomial distribution are not infinitely divisible, nor are any other distributions with bounded support (≈ finite-sized domain), other than the one-point distribution mentioned above. The distribution of the reciprocal of a random variable having a Student's t-distribution is also not infinitely divisible.

Any compound Poisson distribution is infinitely divisible; this follows immediately from the definition.

Limit theorem

Infinitely divisible distributions appear in a broad generalization of the central limit theorem: the limit as n → +∞ of the sum Sn = Xn1 + ... + Xnn of independent uniformly asymptotically negligible (u.a.n.) random variables within a triangular array

X 11 X 21 X 22 X 31 X 32 X 33 {\displaystyle {\begin{array}{cccc}X_{11}\\X_{21}&X_{22}\\X_{31}&X_{32}&X_{33}\\\vdots &\vdots &\vdots &\ddots \end{array}}}

approaches — in the weak sense — an infinitely divisible distribution. The uniformly asymptotically negligible (u.a.n.) condition is given by

lim n max 1 k n P ( | X n k | > ε ) = 0  for every  ε > 0. {\displaystyle \lim _{n\to \infty }\,\max _{1\leq k\leq n}\;P(\left|X_{nk}\right|>\varepsilon )=0{\text{ for every }}\varepsilon >0.}

Thus, for example, if the uniform asymptotic negligibility (u.a.n.) condition is satisfied via an appropriate scaling of identically distributed random variables with finite variance, the weak convergence is to the normal distribution in the classical version of the central limit theorem. More generally, if the u.a.n. condition is satisfied via a scaling of identically distributed random variables (with not necessarily finite second moment), then the weak convergence is to a stable distribution. On the other hand, for a triangular array of independent (unscaled) Bernoulli random variables where the u.a.n. condition is satisfied through

lim n n p n = λ , {\displaystyle \lim _{n\rightarrow \infty }np_{n}=\lambda ,}

the weak convergence of the sum is to the Poisson distribution with mean λ as shown by the familiar proof of the law of small numbers.

Lévy process

Main article: Lévy process

Every infinitely divisible probability distribution corresponds in a natural way to a Lévy process. A Lévy process is a stochastic processLt : t ≥ 0 } with stationary independent increments, where stationary means that for s < t, the probability distribution of LtLs depends only on t − s and where independent increments means that that difference LtLs is independent of the corresponding difference on any interval not overlapping with , and similarly for any finite number of mutually non-overlapping intervals.

If { Lt : t ≥ 0 } is a Lévy process then, for any t ≥ 0, the random variable Lt will be infinitely divisible: for any n, we can choose (Xn1, Xn2, ..., Xnn) = (Lt/nL0, L2t/nLt/n, ..., LtL(n−1)t/n). Similarly, LtLs is infinitely divisible for any s < t.

On the other hand, if F is an infinitely divisible distribution, we can construct a Lévy process { Lt : t ≥ 0 } from it. For any interval where t − s > 0 equals a rational number p/q, we can define LtLs to have the same distribution as Xq1 + Xq2 + ... + Xqp. Irrational values of t − s > 0 are handled via a continuity argument.

Additive process

Main article: Additive process

An additive process { X t } t 0 {\displaystyle \{X_{t}\}_{t\geq 0}} (a cadlag, continuous in probability stochastic process with independent increments) has an infinitely divisible distribution for any t 0 {\displaystyle t\geq 0} . Let { μ t } t 0 {\displaystyle \{\mu _{t}\}_{t\geq 0}} be its family of infinitely divisible distributions.

{ μ t } t 0 {\displaystyle \{\mu _{t}\}_{t\geq 0}} satisfies a number of conditions of continuity and monotonicity. Moreover, if a family of infinitely divisible distributions { μ t } t 0 {\displaystyle \{\mu _{t}\}_{t\geq 0}} satisfies these continuity and monotonicity conditions, there exists (uniquely in law) an additive process { μ t } t 0 {\displaystyle \{\mu _{t}\}_{t\geq 0}} with this distribution.

See also

Footnotes

  1. ^ Lukacs, E. (1970) Characteristic Functions, Griffin, London. p. 107
  2. Thorin, Olof (1977). "On the infinite divisibility of the lognormal distribution". Scandinavian Actuarial Journal. 1977 (3): 121–148. doi:10.1080/03461238.1977.10405635. ISSN 0346-1238.
  3. Sato, Ken-iti (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press. pp. 31, 148. ISBN 978-0-521-55302-5.
  4. Johnson, N.L.; Kotz, S.; Balakrishnan, N. (1995). Continuous Univariate Distributions (2nd ed.). Wiley. volume 2, chapter 28, page 368. ISBN 0-471-58494-0.
  5. Sato, Ken-Ito (1999). Lévy processes and infinitely divisible distributions. Cambridge University Press. pp. 31–68. ISBN 9780521553025.

References

  • Domínguez-Molina, J.A.; Rocha-Arteaga, A. (2007) "On the Infinite Divisibility of some Skewed Symmetric Distributions". Statistics and Probability Letters, 77 (6), 644–648 doi:10.1016/j.spl.2006.09.014
  • Steutel, F. W. (1979), "Infinite Divisibility in Theory and Practice" (with discussion), Scandinavian Journal of Statistics. 6, 57–64.
  • Steutel, F. W. and Van Harn, K. (2003), Infinite Divisibility of Probability Distributions on the Real Line (Marcel Dekker).
Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Univariate (circular) directional
Circular uniform
Univariate von Mises
Wrapped normal
Wrapped Cauchy
Wrapped exponential
Wrapped asymmetric Laplace
Wrapped Lévy
Bivariate (spherical)
Kent
Bivariate (toroidal)
Bivariate von Mises
Multivariate
von Mises–Fisher
Bingham
Degenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
Categories:
Infinite divisibility (probability) Add topic