Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
(Redirected from Jarid2)
Protein-coding gene in the species Homo sapiens
Jarid2 (jumonji, AT rich interactive domain 2) is a protein coding gene that functions as a putative transcription factor. Distinguished as a nuclear protein necessary for mouse embryogenesis, Jarid2 is a member of the jumonji family that contains a DNA binding domain known as the AT-rich interaction domain (ARID). In vitro studies of Jarid2 reveal that ARID along with other functional domains are involved in DNA binding, nuclear localization, transcriptional repression, and recruitment of Polycomb-repressive complex 2 (PRC2). Intracellular mechanisms underlying these interactions remain largely unknown.
In search of developmentally important genes, Jarid2 has previously been identified by gene trap technology as an important factor necessary for organ development. During mouse organogenesis, Jarid2 is involved in the formation of the neural tube and development of the liver, spleen, thymus and cardiovascular system. Continuous Jarid2 expression in the tissues of the heart, highlight its presiding role in the development of both the embryonic and the adult heart. Mutant models of Jarid2 embryos show severe heart malformations, ventricular septal defects, noncompaction of the ventricular wall, and atrial enlargement. Homozygous mutants of Jarid2 are found to die soon after birth. Overexpression of the mouse Jarid2 gene has been reported to repress cardiomyocyte proliferation through it close interaction with retinoblastoma protein (Rb), a master cell cycle regulator. Retinoblastoma-binding protein-2 and the human SMCX protein share regions of homology between mice and humans.
Takahashi M, Kojima M, Nakajima K, Suzuki-Migishima R, Motegi Y, Yokoyama M, Takeuchi, T (2004). "Cardiac abnormalities cause early lethality of jumonji mutant mice". Biochemical and Biophysical Research Communications. 324 (4): 1319–23. doi:10.1016/j.bbrc.2004.09.203. PMID15504358.
Toyoda M, Kojima M, Takeuchi T (2000). "Jumonji is a nuclear protein that participates in the negative regulation of cell growth". Biochemical and Biophysical Research Communications. 274 (2): 332–6. doi:10.1006/bbrc.2000.3138. PMID10913339.
^ Klassen SS, Rabkin SW (2008). "Nitric oxide induces gene expression of jumonji and retinoblastoma 2 protein while reducing expression of atrial natriuretic peptide precursor type B in cardiomyocytes". Folia Biologica. 54 (2): 65–70. doi:10.14712/fb2008054020065. PMID18498724.
Motoyama J, Kitajima K, Kojima M, Kondo S, Takeuchi T (1997). "Organogenesis of the liver, thymus and spleen is affected in jumonji mutant mice". Mechanisms of Development. 66 (1–2): 27–37. doi:10.1016/s0925-4773(97)00082-8. PMID9376320. S2CID6531281.
Toyoda M, Kojima M, Takeuchi T (2000). "Jumonji is a nuclear protein that participates in the negative regulation of cell growth". Biochem. Biophys. Res. Commun. 274 (2): 332–6. doi:10.1006/bbrc.2000.3138. PMID10913339.
Volcik KA, Zhu H, Finnell RH, et al. (2004). "Evaluation of the jumonji gene and risk for spina bifida and congenital heart defects". Am. J. Med. Genet. A. 126 (2): 215–7. doi:10.1002/ajmg.a.20574. PMID15057990. S2CID221248186.
Pedrosa E, Ye K, Nolan KA, et al. (2007). "Positive association of schizophrenia to JARID2 gene". Am. J. Med. Genet. B Neuropsychiatr. Genet. 144 (1): 45–51. doi:10.1002/ajmg.b.30386. PMID16967465. S2CID25560999.