Misplaced Pages

Job safety analysis

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Procedure to integrate safety practices into a particular task
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (February 2010) (Learn how and when to remove this message)

A job safety analysis (JSA) is a procedure that helps integrate accepted safety and health principles and practices into a particular task or job operation. The goal of a JSA is to identify potential hazards of a specific role and recommend procedures to control or prevent these hazards.

Other terms often used to describe this procedure are job hazard analysis (JHA), hazardous task analysis (HTA) and job hazard breakdown.

The terms "job" and "task" are commonly used interchangeably to mean a specific work assignment. Examples of work assignments include "operating a grinder," "using a pressurized water extinguisher" or "changing a flat tire." Each of these tasks have different safety hazards that can be highlighted and fixed by using the job safety analysis.

Terminology and definitions

Workplace hazard categories

Workplace hazards can be allocated to six categories:

  • Safety hazards: Ex. spills, working from heights, confined spaces
  • Biological hazards: Ex. bodily fluids, animal droppings, pathogens
  • Physical hazards: Ex. radiation, extreme temperatures, loud noises
  • Ergonomic hazards: Ex. awkward postures, incorrect lifting, vibration
  • Chemical hazards: Ex. vapors and fumes, pesticides, flammable liquids
  • Work organization hazards: Ex. workload demands, job stress, lack of respect
Mechanism of injury

Mechanism of injury (MOI) is the means by which an injury occurs. It is important because in the absence of an MoI there is no hazard. Common mechanisms of injury are "slips, trips and falls", for example:

  • Hazard: Ex. a tool bag (in walkway)
  • Mechanism of injury: Ex. trip (over tool bag)
  • Injury = Bone fracture

Other common mechanisms of injury include:

  • Struck against or by
  • Contact with or by
  • Caught in, on, by or between
  • Exposure to
  • Fall to same or lower level
Likelihood

Likelihood is how often an event is reasonably and realistically expected to occur in a given time, and may be expressed as a probability, frequency or percentage.

Consequence
Consequence diagram

Consequence is the outcome of an event expressed qualitatively or quantitatively, being a loss, injury, disadvantage or gain. There may be a range of possible outcomes associated with an event.

Consequence is the severity of the injury or harm that can be reasonably and realistically expected from exposure to the mechanism of injury of the hazard being rated. An implemented control may affect the severity of the injury, but it has no effect on the way the injury occurred. Therefore, when rating risk, the consequence remains the same for both the initial rating and the residual rating. People inherently tend to overestimate severity of consequence when rating risk, but the rating should be both reasonable and realistic.

Risk

Risk is the combination of likelihood and consequence. The risk at hand ties directly into the likelihood and severity of an incident.

Risk authority

The risk authority is the organizational level of the person authorized to accept a specified level of risk. For example, different levels of risk authorities may be assigned as follows:

Risk level Risk authority
Low risk Supervisor
Moderate risk Superintendent
Significant risk Manager
High risk Unacceptable without mitigation
"As low as reasonably practicable" (ALARP)
"As low as reasonably pracicable" (ALARP) carrot diagram

As low as reasonably practicable when applied to job safety analysis means that it is not necessary to reduce risk beyond the point where the cost of further control becomes disproportionate to any achievable safety benefit. The "ALARA" acronym ("As low as reasonably achievable") is also in common usage.

Reasonably practicable

In relation to a duty to ensure health and safety, reasonably practicable means that which is, or was at a particular time, reasonably able to be done to ensure health and safety, taking into account and weighing up all relevant matters including:

  • The likelihood of the hazard or the risk concerned occurring
  • The degree of harm that might result from the hazard or the risk
  • What the person concerned knows, or ought reasonably to know, about the hazard or risk, and about the ways of eliminating or minimizing the risk
  • The availability and suitability of ways to eliminate or minimize the risk
  • After assessing the extent of the risk and the available ways of eliminating or minimizing the risk, the cost associated with available ways of eliminating or minimizing the risk, including whether the cost is grossly disproportionate to the expected reduction of risk
Work process
The way in which work is performed is called the work process. This entails all actions taken to do a specific role in the workplace.
PEPE

PEPE is used to assist in identifying hazards. It is an acronym for the four elements that are present in every task of the work process:

  • Process,
  • Environment,
  • People,
  • EMT, which is itself an acronym for 'equipment, materials and tools'.
Process

In this context, process is about procedures, standards, legislation, safe work instructions, permits and permit systems, risk assessments and policies. Key factors for effective process are that the relevant components are in place, easy to follow and regularly reviewed and updated.

Environmental hazards

People may be exposed to issues related to:

  • Access and egress
  • Obstructions
  • Weather
  • Dust, heat, cold, noise
  • Darkness
  • Contaminants
  • Isolated workers
  • Other workers
Personnel hazards

To assist people to be safe in their workplace they need to be provided with sufficient information, training, instructions and supervision. People may be:

  • Untrained
  • Not yet competent
  • Uncertified
  • Inexperienced
  • Unsupervised
  • Affected by alcohol or other drugs
  • Fatigued
  • Inadequately instructed
  • Suffering from stress from home life or workplace bullying
  • Have a poor attitude to, or refuse to follow procedures
Equipment, materials and tools (EMT)

The right equipment, materials and tools must be selected for the task, and incorrect selections may be hazardous in themselves.

  • The EMT may be hazardous, e.g. sharp, hot, vibrating, heavy, fragile, contain pinch points, a hazardous substance containing hydrocarbons, acids, alkalis, glues, solvents, asbestos, et cetera
  • There may be a need for isolating personnel from energy sources such as electricity, hydraulic, pneumatic, radiation and gravitational sources
  • Is the EMT in date? Does it require certification and/or calibration, tested and tagged?
  • Obstructions should be kept out of walkways and leads and hoses suspended?

Hazard controls

Controls are the barriers between people and/or assets and the hazards. Controls can also be thought of as "guardrails" that prevent negative impacts from occurring.

  • A hard control provides a physical barrier between the person and the hazard. Hard controls include machine guards, restraint equipment, fencing/barricading.
  • A soft control does not provide a physical barrier between the person and the hazard. Soft controls include signage, procedures, permits, verbal instructions etc.

Control effectiveness criteria

The effectiveness of a control is measured by its ability to reduce the likelihood of a hazard causing injury or damage. A control is either effective or not.

To gauge this effectiveness several control criteria are used, which:

  • Address the relevant aspects of process, environment, people, and equipment, materials and tools (PEPE),
  • Reduce likelihood to as low as reasonably practicable (ALARP),
  • Selected hard controls in preference to soft controls, and
  • Contain a 'doing word'.

There is no commonly used mathematical way in which multiple controls for a single hazard can be combined to give a score that meets an organizations acceptable risk level. In instances where the residual risk is greater than the organisations acceptable risk level, consultation with the organizations relevant risk authority should occur.

Hierarchy of controls

Hierarchy of controls

Hierarchy of control is a system used in industry to minimize or eliminate exposure to hazards. It is a widely accepted system promoted by numerous safety organizations. This concept is taught to managers in industry, to be promoted as a standard practice in the workplace. Various illustrations are used to depict this system, most commonly a triangle.

The hierarchy of hazard controls are, in descending order of effectiveness: Elimination, substitution, engineering controls, administrative controls, and personal protective equipment.

Scope of application

A job safety analysis is a documented risk assessment developed when company policy directs employees to do so. Workplace hazard identification and an assessment of those hazards may be required before every job.

Analyses are usually developed when directed to do so by a supervisor, when indicated by the use of a first tier risk assessment and when a hazard associated with a task has a likelihood rating of 'possible' or greater.

Generally, high consequence, high likelihood task hazards are addressed by way of a job safety analysis. These may include, but are not limited to, those with a history of, or potential for, injury, harm or damage such as those involving:

  • Fire, chemicals or a toxic or oxygen deficient atmosphere
  • Tasks carried out in new environments
  • Rarely performed tasks
  • Tasks that may impact on the integrity or output of a processing system

It is important that employees understand that it is not the JSA form that will keep them safe on the job, but rather the process it represents. It is of little value to identify hazards and devise controls if the controls are not put in place. Workers should never be tempted to "sign on" the bottom of a JSA without first reading and understanding it.

JSAs are quasi-legal documents, and are often used in incident investigations and court cases.

Structure of a job safety analysis

The analysis is usually created by the work group who will perform the task. The more minds and experience applied to analysing the hazards in a job, the more successful the work group is likely to be in controlling them. Sometimes it is expedient to review a JSA that was prepared when the same task was performed on a previous occasion, but care should be taken to ensure that all of the hazards for the job are controlled for the new occasion. The JSA is usually recorded in a standardized tabular format with three to as many as five or six columns. The more columns used, the more in-depth the job safety analysis will be. The analysis is subjective to what the role being investigated entails. The headings of the three basic columns are: Job step, hazard and controls. A hazard is any factor that can cause damage to personnel, property or the environment (some companies include loss of production or downtime in the definition as well). A control is any process for controlling a hazard. The job is broken down into its component steps. Then, for each step, hazards are identified. Finally, for each hazard identified, controls are listed. In the example below, the hazards are analyzed for the task of erecting scaffolding and welding lifting lugs:

Job Hazard Control
Erecting scaffolding Falling scaffolding components Barricade work area while erecting and dismantling scaffolding
Working at height Verify scaffolder competence
Inspect scaffold components and structure
Tag scaffolding after approval
Wear appropriate protective equipment (harness, hard hats, safety footwear etc.)
Tether tools
Welding Electrical current Wear insulated gloves
Inspect cables, connections and tools before use
Welding fumes Ventilate using intrinsically safe fume extraction fans
Wear respiratory protection when appropriate
Welding arc Wear welding helmet with eye protection, fire resistant overalls, welding gloves and apron
Erect welding screens if appropriate
Hot weld metal, sparks and slag Remove all combustibles from work area
Lay out fireproof drop cloths.
Set up appropriate fire fighting equipment in work area
Maintain a fire watch during task plus 30 minutes.
Housekeeping Obstacles in work area Maintain a clear path work area
Remove unnecessary and vulnerable equipment
Display warning signage
Barricade danger areas

Assessing risk levels

Some organizations add columns for risk levels. The risk rating of the hazard prior to applying the control is known as the 'inherent risk rating'. The risk rating of the hazard with the control in place is known as the 'residual' risk rating.

Risk, within the occupational health and safety sphere, is defined as the 'effect of uncertainties on objectives'. In the context of rating a risk, it is the correlation of 'likelihood' and 'consequence', where likelihood is a quantitative evaluation of frequency of occurrences over time, and consequence is a qualitative evaluation of both the "Mechanism of Injury" and the reasonable and realistic estimate of "severity of injury".

Example:

There is historical precedent to reasonably and realistically evaluate that the likelihood of an adverse event occurring while operating a hot particle producing tool, (grinder), is "possible", therefore the activity of grinding meets the workplace hazard criteria.
It would also be reasonable and realistic to assume that the mechanism of injury of an eye being struck at high speed with hot metal particles may result in a permanent disability, whether it be the eye of the grinder operator, a crew member or any person passing or working adjacent to, above or below the grinding operation.
The severity of reasonably and realistically expected injury may be blindness. Therefore, grinding warrants a high severity rating.
Wearing eye protection while in the vicinity of grinding operations reduces the likelihood of this adverse event occurring.
If the eye protection was momentarily not used, not fitted correctly or failed and hot high speed particles struck an eye, the expected mechanism of injury (adverse event) has still occurred, hence the consequence rating remains the same for both the inherent and residual consequence rating.
It is accepted that the control may affect the severity of injury, however, the rated consequence remains the same as the effect is not predictable.

One of the known risk rating anomalies is that likelihood and the severity of injury can be scaled, but mechanism of injury cannot be scaled. This is the reason why the mechanism of injury is bundled with severity, to allow a rating to be given. The MoI is an important factor as it suggests the obvious controls.

Identifying responsibilities

Another column that is often added to a JSA form or worksheet is the Responsible column. The Responsible column is for the name of the individual who will put the particular control in place. Defining who is responsible for actually putting the controls in place that have been identified on the JSA worksheet ensures that an individual is accountable for doing so.

Application of the JSA

After the JSA worksheet is completed, the work group that is about to perform the task would have a toolbox talk, to discuss the hazards and controls, delegate responsibilities, ensure that all equipment and personal protective equipment described in the JSA are available, that contingencies such as fire fighting are understood, communication channels and hand signals are agreed etc. Then, if everybody in the work group agrees that it is safe to proceed with the task, work can commence.

If at any time during the task circumstances change, then work should be stopped (sometimes called a "time-out for safety"), and the hazards and controls described in the JSA should be reassessed and additional controls used or alternative methods devised. Again, work should only continue when every member of the work group agrees it is safe to do so.

When the task is complete it is often of benefit to have a close-out or "tailgate" meeting, to discuss any lessons learned so that they may be incorporated into the JSA the next time the task is undertaken.

References

  1. OSHA. "Recommended Practices for Safety and Health Programs". osha.gov. OSHA. Retrieved November 13, 2023.
  2. ^ Toney-Butler, Tammy J.; Varacallo, Matthew (2023), "Motor Vehicle Collisions", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 28722984, retrieved 2023-11-16
  3. ^ AS/NZS4360:2009 Risk Management/year=2009, Australian Standards
  4. Risk Management - Risk assessment techniques - International Standard IEC/ISO 31010, ISO, 2011, p. 90
  5. CDC (2022-05-18). "ALARA - As Low As Reasonably Achievable". Centers for Disease Control and Prevention. Retrieved 2023-11-16.
  6. How to determine what is reasonably practicable to meet a health and safety duty - Guidance note - Safe Work Australia - May 2013
  7. ^ "Hierarchy of Controls | NIOSH | CDC". www.cdc.gov. 2023-01-17. Retrieved 2023-11-16.
  8. AS/NZS ISO 31000:2009 Risk management - Principles and guidelines. Standards Australia. 2009. pp. Preface (a). ISBN 978-0-7337-9289-2.
Occupational safety and health
Occupational
diseases

and injuries
Occupational
hygiene
Professions
Agencies and
organizations
International
National
Standards
Safety
Legislation
See also
Underwater diving
Diving equipment
Basic equipment
Breathing gas
Buoyancy and
trim equipment
Decompression
equipment
Diving suit
Helmets
and masks
Instrumentation
Mobility
equipment
Safety
equipment
Underwater
breathing
apparatus
Open-circuit
scuba
Diving rebreathers
Surface-supplied
diving equipment
Diving
equipment
manufacturers
Diving support equipment
Access equipment
Breathing gas
handling
Decompression
equipment
Platforms
Underwater
habitat
Remotely operated
underwater vehicles
Safety equipment
General
Freediving
Activities
Competitions
Equipment
Freedivers
Hazards
Historical
Organisations
Professional diving
Occupations
Military
diving
Military
diving
units
Underwater
work
Salvage diving
Diving
contractors
Tools and
equipment
Underwater
weapons
Underwater
firearm
Recreational diving
Specialties
Diver
organisations
Diving tourism
industry
Diving events
and festivals
Diving safety
Diving
hazards
Consequences
Diving
procedures
Risk
management
Diving team
Equipment
safety
Occupational
safety and
health
Diving medicine
Diving
disorders
Pressure
related
Oxygen
Inert gases
Carbon dioxide
Breathing gas
contaminants
Immersion
related
Treatment
Personnel
Screening
Research
Researchers in
diving physiology
and medicine
Diving medical
research
organisations
Law
History of underwater diving
Archeological
sites
Underwater art
and artists
Engineers
and inventors
Historical
equipment
Diver
propulsion
vehicles
Military and
covert operations
Scientific projects
Awards and events
Incidents
Dive boat incidents
Diver rescues
Early diving
Freediving fatalities
Offshore
diving
incidents
Professional
diving
fatalities
Scuba diving
fatalities
Publications
Manuals
Standards and
Codes of Practice
General non-fiction
Research
Dive guides
Training and registration
Diver
training
Skills
Recreational
scuba
certification
levels
Core diving skills
Leadership skills
Specialist skills
Diver training
certification
and registration
organisations
Commercial diver
certification
authorities
Commercial diving
schools
Free-diving
certification
agencies
Recreational
scuba
certification
agencies
Scientific diver
certification
authorities
Technical diver
certification
agencies
Cave
diving
Military diver
training centres
Military diver
training courses
Underwater sports
Surface snorkeling
Snorkeling/breath-hold
Breath-hold
Open Circuit Scuba
Rebreather
Sports governing
organisations
and federations
Competitions
Underwater divers
Pioneers
of diving
Underwater
scientists
archaeologists and
environmentalists
Scuba record
holders
Underwater
filmmakers
and presenters
Underwater
photographers
Underwater
explorers
Aquanauts
Writers and journalists
Rescuers
Frogmen
Commercial salvors
Science of underwater diving
Diving
physics
Diving
physiology
Decompression
theory
Diving
environments
Classification
Impact
Other
Deep-submergence
vehicle
Submarine rescue
Deep-submergence
rescue vehicle
Submarine escape
Escape set
Special
interest
groups
Neutral buoyancy
facilities for
Astronaut training
Other
Categories: