Misplaced Pages

Kirchhoff equations

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Kirchhoff's equations) Motion of rigid body in ideal fluid For other laws named after Gustav Kirchhoff, see Kirchhoff's laws.
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (April 2021) (Learn how and when to remove this message)

In fluid dynamics, the Kirchhoff equations, named after Gustav Kirchhoff, describe the motion of a rigid body in an ideal fluid.

d d t T ω = T ω × ω + T v × v + Q h + Q , d d t T v = T v × ω + F h + F , T = 1 2 ( ω T I ~ ω + m v 2 ) Q h = p x × n ^ d σ , F h = p n ^ d σ {\displaystyle {\begin{aligned}{\mathrm {d} \over \mathrm {d} t}{{\partial T} \over {\partial {\boldsymbol {\omega }}}}&={{\partial T} \over {\partial {\boldsymbol {\omega }}}}\times {\boldsymbol {\omega }}+{{\partial T} \over {\partial \mathbf {v} }}\times \mathbf {v} +\mathbf {Q} _{h}+\mathbf {Q} ,\\{\mathrm {d} \over \mathrm {d} t}{{\partial T} \over {\partial \mathbf {v} }}&={{\partial T} \over {\partial \mathbf {v} }}\times {\boldsymbol {\omega }}+\mathbf {F} _{h}+\mathbf {F} ,\\T&={1 \over 2}\left({\boldsymbol {\omega }}^{T}{\tilde {I}}{\boldsymbol {\omega }}+mv^{2}\right)\\\mathbf {Q} _{h}&=-\int p\mathbf {x} \times {\hat {\mathbf {n} }}\,d\sigma ,\\\mathbf {F} _{h}&=-\int p{\hat {\mathbf {n} }}\,d\sigma \end{aligned}}}

where ω {\displaystyle {\boldsymbol {\omega }}} and v {\displaystyle \mathbf {v} } are the angular and linear velocity vectors at the point x {\displaystyle \mathbf {x} } , respectively; I ~ {\displaystyle {\tilde {I}}} is the moment of inertia tensor, m {\displaystyle m} is the body's mass; n ^ {\displaystyle {\hat {\mathbf {n} }}} is a unit normal vector to the surface of the body at the point x {\displaystyle \mathbf {x} } ; p {\displaystyle p} is a pressure at this point; Q h {\displaystyle \mathbf {Q} _{h}} and F h {\displaystyle \mathbf {F} _{h}} are the hydrodynamic torque and force acting on the body, respectively; Q {\displaystyle \mathbf {Q} } and F {\displaystyle \mathbf {F} } likewise denote all other torques and forces acting on the body. The integration is performed over the fluid-exposed portion of the body's surface.

If the body is completely submerged body in an infinitely large volume of irrotational, incompressible, inviscid fluid, that is at rest at infinity, then the vectors Q h {\displaystyle \mathbf {Q} _{h}} and F h {\displaystyle \mathbf {F} _{h}} can be found via explicit integration, and the dynamics of the body is described by the KirchhoffClebsch equations:

d d t L ω = L ω × ω + L v × v , d d t L v = L v × ω , {\displaystyle {\mathrm {d} \over \mathrm {d} t}{{\partial L} \over {\partial {\boldsymbol {\omega }}}}={{\partial L} \over {\partial {\boldsymbol {\omega }}}}\times {\boldsymbol {\omega }}+{{\partial L} \over {\partial \mathbf {v} }}\times \mathbf {v} ,\quad {\mathrm {d} \over \mathrm {d} t}{{\partial L} \over {\partial \mathbf {v} }}={{\partial L} \over {\partial \mathbf {v} }}\times {\boldsymbol {\omega }},}

L ( ω , v ) = 1 2 ( A ω , ω ) + ( B ω , v ) + 1 2 ( C v , v ) + ( k , ω ) + ( l , v ) . {\displaystyle L({\boldsymbol {\omega }},\mathbf {v} )={1 \over 2}(A{\boldsymbol {\omega }},{\boldsymbol {\omega }})+(B{\boldsymbol {\omega }},\mathbf {v} )+{1 \over 2}(C\mathbf {v} ,\mathbf {v} )+(\mathbf {k} ,{\boldsymbol {\omega }})+(\mathbf {l} ,\mathbf {v} ).}

Their first integrals read J 0 = ( L ω , ω ) + ( L v , v ) L , J 1 = ( L ω , L v ) , J 2 = ( L v , L v ) . {\displaystyle J_{0}=\left({{\partial L} \over {\partial {\boldsymbol {\omega }}}},{\boldsymbol {\omega }}\right)+\left({{\partial L} \over {\partial \mathbf {v} }},\mathbf {v} \right)-L,\quad J_{1}=\left({{\partial L} \over {\partial {\boldsymbol {\omega }}}},{{\partial L} \over {\partial \mathbf {v} }}\right),\quad J_{2}=\left({{\partial L} \over {\partial \mathbf {v} }},{{\partial L} \over {\partial \mathbf {v} }}\right).}

Further integration produces explicit expressions for position and velocities.

References

  • Kirchhoff G. R. Vorlesungen ueber Mathematische Physik, Mechanik. Lecture 19. Leipzig: Teubner. 1877.
  • Lamb, H., Hydrodynamics. Sixth Edition Cambridge (UK): Cambridge University Press. 1932.
Stub icon

This fluid dynamics–related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Kirchhoff equations Add topic