Misplaced Pages

Matrotrophy

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
A mammal embryo (centre) is attached by its umbilical cord to a placenta (top), through which the mother provides food to the embryo while it is in her uterus.

Matrotrophy is a form of maternal care during organism development, associated with live birth (viviparity), in which the embryo of an animal or flowering plant is supplied with additional nutrition from the mother (e.g. through a placenta). This can be contrasted with lecithotrophy, in which the only source of nutrition for the embryo is yolk originally contained within its egg.

Vegetal matrotrophy

In plants, matrotrophy is considered a critical evolutionary development preceding the origin of embryophytes and therefore essential to the evolution of land plants. Matrotrophy is facilitated by cytological and ultrastructural modifications on one or both sides of the generational junction, a region called the placenta. Specialization of the placental cells pertains further to their cytological and ultrastructural characteristics: the cytoplasm is often dense and rich in lipids, the vacuole is typically reduced but large in Sphagnum, the endoplasmic reticulum extensive, mitochondria numerous and large, chloroplasts numerous, often less differentiated, rich in lipid-filled globuli and sometimes filled with starch.

Animal matrotrophy

While commonly associated with vertebrates and especially mammals, matrotrophy is found in 21 of 34 animal phyla, and is fairly common in 11 of those. It has arisen independently in more than 150 clades within Chordata and in more than 140 clades amongst invertebrates.

See also

References

  1. Graham, L.K.E. & Wilcox, L.W. (2000). "The origin of alternation of generations in land plants: A focus on matrotrophy and hexose transport". Philosophical Transactions of the Royal Society of London B. 355 (1398): 757–67. doi:10.1098/rstb.2000.0614. PMC 1692790. PMID 10905608.
  2. ^ Ligrone, R.; Duckett, J.G.; Renzaglia, K.S. (1993). "The gametophyte-sporophyte junction in land plants". Advances in Botanical Research. 19: 231–317. doi:10.1016/S0065-2296(08)60206-2. ISBN 9780120059195.
  3. ^ Ostrovsky, Andrew N.; Lidgard, Scott; Gordon, Dennis P.; Schwaha, Thomas; Genikhovich, Grigory; Ereskovsky, Alexander V. (20 April 2015). "Matrotrophy and placentation in invertebrates: a new paradigm". Biological Reviews. 91 (3): 673–711. doi:10.1111/brv.12189. PMC 5098176. PMID 25925633.
  4. Daniel G. Blackburn (2014). "Evolution of vertebrate viviparity and specializations for fetal nutrition: A quantitative and qualitative analysis". Journal of Morphology. 276 (8): 961–990. doi:10.1002/jmor.20272. PMID 24652663. S2CID 549574.
  • Goffinet B, Et al. 2009. Morphology and classification of Bryophyta. In Bryophyte Biology 2nd ed. Cambridge University Press.
Modes of reproduction
Modes Frogspawn
Fertilisation
Parental care
Related topics
Category:
Matrotrophy Add topic