Misplaced Pages

Mavlyanovite

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Manganese-silicon mineral
This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.
Find sources: "Mavlyanovite" – news · newspapers · books · scholar · JSTOR (May 2021)
Mavlyanovite
General
CategoryMineral
Formula
(repeating unit)
Mn5Si3
IMA symbolMav
Strunz classification01.BB.05
Dana classification01.01.23.06
Crystal systemHexagonal
Space groupP63/mcm
Unit cella = 6.8971, c = 4.8075, Z = 2; V = 198.05
Structure
Identification
Colourgrey
Fractureconchoidal
Mohs scale hardness7
Lustermetallic
Streakdark grey
Diaphaneityopaque
Density6.02

Mavlyanovite is a manganese-silicon mineral with formula Mn5Si3. It was named after Gani Mavlyanov, an Uzbek geologist who lived from 1910 to 1988.

Transition metal silicides represent a rich variety of intermetallic compounds with specific crystal and electronic structures owing to the strong interaction between metals and silicon. Recently, transition metal silicides have gained considerable attention from the scientific community because of their unique physicochemical properties such as high thermal stability, excellent electronic conductivity, low electrical resistivity, high strength, good thermodynamic stability, good oxidation, and corrosion resistance. With these favorable properties, transition metal silicides are potential candidates for various nanotechnological applications such as electronics, spintronics, thermoelectrics, and solar energy harvesting. Among all transition metal silicides, manganese silicides have been investigated extensively because of their complex structural diversity and fascinating physical properties. Manganese silicides possess seven thermodynamically stable phases, namely: MnSi1.7 (tetragonal), MnSi (cubic), Mn5Si3 (hexagonal), Mn5Si2 (tetragonal), Mn3Si (cubic), Mn4Si (rhombohedral), and Mn6Si (rhombohedral). Each of these phases results in different magnetic and thermoelectric properties either in microscopic or microscopic scales. For instance, MnSi is an excellent magnetic contact material for magnetic applications and spintronics such as spin field-effect transistors owing to its simple cubic crystal structure without space inversion symmetry. Among the manganese silicide materials, MnSi1.7, which is a higher manganese silicide, has attracted most interest in the researches for its excellent thermoelectric properties such as low thermal conductivity (2–4 W/m.K), high Seebeck coefficient (>200 mV/K at ~700 K) and estimable figure of merit (up to 0.7–0.8). Mn5Si3 is one of the promising materials for spintronic applications because of its hexagonal structure, and has the potential to create high magnetocrystalline anisotropy with novel spin-electronic properties. In addition, Mn5Si3 has a high melting point of 2800 K, indicating that it is a favorable candidate for high-temperature structural applications.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43. S2CID 235729616.
  2. Yusupov, R. G.; Stanley, C. J.; Welch, M. D.; Spratt, J.; Cressey, G.; Rumsey, M. S.; Seltmann, R.; Igamberdiev, E. (February 2009). "Mavlyanovite, Mn 5 Si 3 : a new mineral species from a lamproite diatreme, Chatkal Ridge, Uzbekistan". Mineralogical Magazine. 73 (1): 43–50. doi:10.1180/minmag.2009.073.1.43. S2CID 130176981.
  3. Sadri, Rad (15 January 2021). "Controlled physical properties and growth mechanism of manganese silicide nanorods". Journal of Alloys and Compounds. 851: 156693. doi:10.1016/j.jallcom.2020.156693. S2CID 224922987.
Salts and covalent derivatives of the silicide ion
SiH4
+H
He
LiSi Be2Si SiB3
SiB6
+B
SiC
+C
Si3N4
-N
+N
SiO2 SiF4 Ne
NaSi Mg2Si Al Si SiP, SiP2
-P
+P
SiS2
-S
SiCl4 Ar
KSi CaSi
CaSi2
ScSi Sc5Si3 Sc2Si3 Sc5Si4 TiSi
TiSi2
V3Si V5Si3, V6Si5, VSi2, V6Si5 Cr3Si Cr5Si3, CrSi, CrSi2 MnSi, MnSi2, Mn9Si2, Mn3Si, Mn5Si3, Mn11Si9 FeSi2
FeSi
Fe5Si3
Fe2Si
Fe3Si
CoSi, CoSi2, Co2Si, Co3Si NiSi, more… Cu17Si3, Cu56Si11, Cu5Si, Cu33Si7, Cu4Si, Cu19Si6, Cu3Si, Cu87Si13 Zn Ga GeSi
+Ge
SiAs, SiAs2
-As
+As
SiSe2 SiSe SiBr4 Kr
RbSi SrSi2 YSi Y5Si3, Y5Si4, Y3Si5, YSi1.4 ZrSi Zr5Si3, Zr5Si4, ZrSi2, Zr3Si2, Zr2Si, Zr3Si Nb4Si Nb5Si3 MoSi2
Mo3Si Mo5Si3
Tc RuSi Ru2Si, Ru4Si3, Ru2Si3 RhSi Rh2Si, Rh5Si3, Rh3Si2, Rh20Si13 PdSi Pd5Si, Pd9Si2, Pd3Si, Pd2Si Ag Cd In Sn Sb TeSi2 Te2Si3 SiI4 Xe
CsSi Ba2Si BaSi2, Ba5Si3 Ba3Si4 * Lu5Si3 HfSi Hf2Si, Hf3Si2, Hf5Si4, HfSi2 Ta9Si2, Ta3Si, Ta5Si3 WSi2 W5Si3 ReSi Re2Si, ReSi1.8 Re5Si3 OsSi IrSi PtSi Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaSi2 La5Si3, La3Si2, La5Si4, LaSi CeSi2 Ce5Si3, Ce3Si2, Ce5Si4, CeSi, Ce3Si5 PrSi2 Pr5Si3, Pr3Si2, Pr5Si4, PrSi NdSi Nd5Si3, Nd5Si4, Nd5Si3, Nd3Si4, Nd2Si3, NdSix Pm SmSi2 Sm5Si4, Sm5Si3, SmSi, Sm3Si5 Eu? GdSi2 Gd5Si3, Gd5Si4, GdSi TbSi2 SiTb, Si4Tb5, Si3Tb5 DySi2 DySi HoSi2 Ho5Si3, Ho5Si4, HoSi, Ho4Si5 ErSi2 Er5Si3, Er5Si4, ErSi Tm? YbSi Si1.8Yb, Si5Yb3, Si4Yb3, Si4Yb5, Si3Yb5
** Ac ThSi PaSi USi2 NpSi2 PuSi Am Cm Bk Cf Es Fm Md No
Category:
Mavlyanovite Add topic