Misplaced Pages

Motivic L-function

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, motivic L-functions are a generalization of Hasse–Weil L-functions to general motives over global fields. The local L-factor at a finite place v is similarly given by the characteristic polynomial of a Frobenius element at v acting on the v-inertial invariants of the v-adic realization of the motive. For infinite places, Jean-Pierre Serre gave a recipe in (Serre 1970) for the so-called Gamma factors in terms of the Hodge realization of the motive. It is conjectured that, like other L-functions, that each motivic L-function can be analytically continued to a meromorphic function on the entire complex plane and satisfies a functional equation relating the L-function L(sM) of a motive M to L(1 − s, M), where M is the dual of the motive M.

Examples

Basic examples include Artin L-functions and Hasse–Weil L-functions. It is also known (Scholl 1990), for example, that a motive can be attached to a newform (i.e. a primitive cusp form), hence their L-functions are motivic.

Conjectures

Several conjectures exist concerning motivic L-functions. It is believed that motivic L-functions should all arise as automorphic L-functions, and hence should be part of the Selberg class. There are also conjectures concerning the values of these L-functions at integers generalizing those known for the Riemann zeta function, such as Deligne's conjecture on special values of L-functions, the Beilinson conjecture, and the Bloch–Kato conjecture (on special values of L-functions).

Notes

  1. Another common normalization of the L-functions consists in shifting the one used here so that the functional equation relates a value at s with one at w + 1 − s, where w is the weight of the motive.
  2. Langlands 1980

References

L-functions in number theory
Analytic examples
Algebraic examples
Theorems
Analytic conjectures
Algebraic conjectures
p-adic L-functions
Categories:
Motivic L-function Add topic