Misplaced Pages

Norbert Wiener

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from N. Wiener) American mathematician and philosopher (1894–1964)

Norbert Wiener
Born(1894-11-26)November 26, 1894
Columbia, Missouri, U.S.
DiedMarch 18, 1964(1964-03-18) (aged 69)
Stockholm, Sweden
EducationTufts College (BA)
Cornell University (MA)
Harvard University (PhD)
Known for  
Spouse Margaret Engemann ​(m. 1926)
Children2
AwardsBôcher Memorial Prize (1933)
National Medal of Science (1963)
Scientific career
FieldsMathematics
Cybernetics
Computer Science
InstitutionsMassachusetts Institute of Technology
ThesisA Comparison Between the Treatment of the Algebra of Relatives by Schroeder and that by Whitehead and Russell (1913)
Doctoral advisorsKarl Schmidt
Other academic advisorsJosiah Royce
Doctoral students
Signature

Norbert Wiener (November 26, 1894 – March 18, 1964) was an American computer scientist, mathematician and philosopher. He became a professor of mathematics at the Massachusetts Institute of Technology (MIT). A child prodigy, Wiener later became an early researcher in stochastic and mathematical noise processes, contributing work relevant to electronic engineering, electronic communication, and control systems.

Wiener is considered the originator of cybernetics, the science of communication as it relates to living things and machines, with implications for engineering, systems control, computer science, biology, neuroscience, philosophy, and the organization of society. His work heavily influenced computer pioneer John von Neumann, information theorist Claude Shannon, anthropologists Margaret Mead and Gregory Bateson, and others.

Wiener is credited as being one of the first to theorize that all intelligent behavior was the result of feedback mechanisms, that could possibly be simulated by machines and was an important early step towards the development of modern artificial intelligence.

Biography

Youth

Wiener was born in Columbia, Missouri, the first child of Leo Wiener and Bertha Kahn, Jewish immigrants from Lithuania and Germany, respectively. Through his father, he was related to Maimonides, the famous rabbi, philosopher and physician from Al Andalus, as well as to Akiva Eger, chief rabbi of Posen from 1815 to 1837.

Leo had educated Norbert at home until 1903, employing teaching methods of his own invention, except for a brief interlude when Norbert was seven years of age. Earning his living teaching German and Slavic languages, Leo read widely and accumulated a personal library from which the young Norbert benefited greatly. Leo also had ample ability in mathematics and tutored his son in the subject until he left home. In his autobiography, Norbert described his father as calm and patient, unless he (Norbert) failed to give a correct answer, at which his father would lose his temper.

In "The Theory of Ignorance", a paper he wrote at the age of 10, he disputed "man’s presumption in declaring that his knowledge has no limits", arguing that all human knowledge "is based on an approximation", and acknowledging "the impossibility of being certain of anything."

He graduated from Ayer High School in 1906 at 11 years of age, and Wiener then entered Tufts College. He was awarded a BA in mathematics in 1909 at the age of 14, whereupon he began graduate studies of zoology at Harvard. In 1910 he transferred to Cornell to study philosophy. He graduated in 1911 at 17 years of age.

Harvard and World War I

The next year he returned to Harvard, while still continuing his philosophical studies. Back at Harvard, Wiener became influenced by Edward Vermilye Huntington, whose mathematical interests ranged from axiomatic foundations to engineering problems. Harvard awarded Wiener a PhD in June 1913, when he was only 19 years old, for a dissertation on mathematical logic (a comparison of the work of Ernst Schröder with that of Alfred North Whitehead and Bertrand Russell), supervised by Karl Schmidt, the essential results of which were published as Wiener (1914). He was one of the youngest to achieve such a feat. In that dissertation, he was the first to state publicly that ordered pairs can be defined in terms of elementary set theory. Hence relations can be defined by set theory, thus the theory of relations does not require any axioms or primitive notions distinct from those of set theory. In 1921, Kazimierz Kuratowski proposed a simplification of Wiener's definition of ordered pairs, and that simplification has been in common use ever since. It is (x, y) = {{x}, {x, y}}.

In 1914, Wiener traveled to Europe, to be taught by Bertrand Russell and G. H. Hardy at Cambridge University, and by David Hilbert and Edmund Landau at the University of Göttingen. At Göttingen he also attended three courses with Edmund Husserl "one on Kant's ethical writings, one on the principles of Ethics, and the seminary on Phenomenology." (Letter to Russell, c. June or July, 1914). During 1915–16, he taught philosophy at Harvard, then was an engineer for General Electric and wrote for the Encyclopedia Americana. Wiener was briefly a journalist for the Boston Herald, where he wrote a feature story on the poor labor conditions for mill workers in Lawrence, Massachusetts, but he was fired soon afterwards for his reluctance to write favorable articles about a politician the newspaper's owners sought to promote.

Although Wiener eventually became a staunch pacifist, he eagerly contributed to the war effort in World War I. In 1916, with America's entry into the war drawing closer, Wiener attended a training camp for potential military officers but failed to earn a commission. One year later Wiener again tried to join the military, but the government again rejected him due to his poor eyesight. In the summer of 1918, Oswald Veblen invited Wiener to work on ballistics at the Aberdeen Proving Ground in Maryland. Living and working with other mathematicians strengthened his interest in mathematics. However, Wiener was still eager to serve in uniform and decided to make one more attempt to enlist, this time as a common soldier. Wiener wrote in a letter to his parents, "I should consider myself a pretty cheap kind of a swine if I were willing to be an officer but unwilling to be a soldier." This time the army accepted Wiener into its ranks and assigned him, by coincidence, to a unit stationed at Aberdeen, Maryland. World War I ended just days after Wiener's return to Aberdeen and Wiener was discharged from the military in February 1919.

After the war

Norbert Wiener was regarded as a semi-legendary figure at MIT.
Norbert (standing) and Margaret Wiener (sitting) at the International Congress of Mathematicians, Zurich 1932

Wiener was unable to secure a permanent position at Harvard, a situation he attributed largely to anti-Semitism at the university and in particular the antipathy of Harvard mathematician G. D. Birkhoff. He was also rejected for a position at the University of Melbourne. At W. F. Osgood's suggestion, Wiener was hired as an instructor of mathematics at MIT, where, after his promotion to professor, he spent the remainder of his career. For many years his photograph was prominently displayed in the Infinite Corridor and often used in giving directions, but by 2017 it had been removed.

In 1926, Wiener returned to Europe as a Guggenheim scholar. He spent most of his time at Göttingen and with Hardy at Cambridge, working on Brownian motion, the Fourier integral, Dirichlet's problem, harmonic analysis, and the Tauberian theorems.

In 1926, Wiener's parents arranged his marriage to a German immigrant, Margaret Engemann; they had two daughters. His sister, Constance (1898–1973), married mathematician Philip Franklin. Their daughter, Janet, Wiener's niece, married mathematician Václav E. Beneš. Norbert Wiener's sister, Bertha (1902–1995), married the botanist Carroll William Dodge.

Many tales, perhaps apocryphal, were told of Norbert Wiener at MIT, especially concerning his absent-mindedness. It was said that he returned home once to find his house empty. He inquired of a neighborhood girl the reason, and she said that the family had moved elsewhere that day. He thanked her for the information and she replied, "It's ok, Daddy, Mommy sent me to get you". Asked about the story, Wiener's daughter reportedly asserted that "he never forgot who his children were! The rest of it, however, was pretty close to what actually happened…"

In the run-up to World War II (1939–45) Wiener became a member of the China Aid Society and the Emergency Committee in Aid of Displaced German Scholars. He was interested in placing scholars such as Yuk-Wing Lee and Antoni Zygmund who had lost their positions.

During and after World War II

During World War II, his work on the automatic aiming and firing of anti-aircraft guns caused Wiener to investigate information theory independently of Claude Shannon and to invent the Wiener filter. (The now-standard practice of modeling an information source as a random process—in other words, as a variety of noise—is due to Wiener.) Initially his anti-aircraft work led him to write, with Arturo Rosenblueth and Julian Bigelow, the 1943 article 'Behavior, Purpose and Teleology', which was published in Philosophy of Science. Subsequently his anti-aircraft work led him to formulate cybernetics. After the war, his fame helped MIT to recruit a research team in cognitive science, composed of researchers in neuropsychology and the mathematics and biophysics of the nervous system, including Warren Sturgis McCulloch and Walter Pitts. These men later made pioneering contributions to computer science and artificial intelligence. Soon after the group was formed, Wiener suddenly ended all contact with its members, mystifying his colleagues. This emotionally traumatized Pitts, and led to his career decline. In their biography of Wiener, Conway and Siegelman suggest that Wiener's wife Margaret, who detested McCulloch's bohemian lifestyle, engineered the breach.

Patrick D. Wall speculated that after the publication of Cybernetics, Wiener asked McCulloch for some physiological facts about the brain that he could then theorize. McCulloch told him "a mixture of what was known to be true and what McCulloch thought should be". Wiener then theorized it, went to a physiology congress, and was shot down. Wiener was convinced that McCulloch had set him up.

Wiener later helped develop the theories of cybernetics, robotics, computer control, and automation. He discussed the modeling of neurons with John von Neumann, and in a letter from November 1946 von Neumann presented his thoughts in advance of a meeting with Wiener.

Wiener always shared his theories and findings with other researchers, and credited the contributions of others. These included Soviet researchers and their findings. Wiener's acquaintance with them caused him to be regarded with suspicion during the Cold War. He was a strong advocate of automation to improve the standard of living, and to end economic underdevelopment. His ideas became influential in India, whose government he advised during the 1950s.

After the war, Wiener became increasingly concerned with what he believed was political interference with scientific research, and the militarization of science. His article "A Scientist Rebels" from the January 1947 issue of The Atlantic Monthly urged scientists to consider the ethical implications of their work. After the war, he refused to accept any government funding or to work on military projects. The way Wiener's beliefs concerning nuclear weapons and the Cold War contrasted with those of von Neumann is the major theme of the book John Von Neumann and Norbert Wiener.

Wiener was a participant of the Macy conferences.

Personal life

In 1926 Wiener married Margaret Engemann, an assistant professor of modern languages at Juniata College. They had two daughters.

Wiener admitted in his autobiography I Am a Mathematician: The Later Life of a Prodigy to abusing benzadrine throughout his life without being fully aware of its dangers.

Wiener died in March 1964, aged 69, in Stockholm, from a heart attack. Wiener and his wife are buried at the Vittum Hill Cemetery in Sandwich, New Hampshire.

Awards and honors

Doctoral students

Work

Information is information, not matter or energy.

— Norbert Wiener, Cybernetics: Or Control and Communication in the Animal and the Machine

Wiener was an early studier of stochastic and mathematical noise processes, contributing work relevant to electronic engineering, electronic communication, and control systems. It was Wiener's idea to model a signal as if it were an exotic type of noise, giving it a sound mathematical basis. The example often given to students is that English text could be modeled as a random string of letters and spaces, where each letter of the alphabet (and the space) has an assigned probability. But Wiener dealt with analog signals, where such a simple example doesn't exist. Wiener's early work on information theory and signal processing was limited to analog signals, and was largely forgotten with the development of the digital theory.

Wiener is one of the key originators of cybernetics, a formalization of the notion of feedback, with many implications for engineering, systems control, computer science, biology, philosophy, and the organization of society. His work with cybernetics influenced Gregory Bateson and Margaret Mead, and through them, anthropology, sociology, and education.

In the mathematical field of probability, the "Wiener sausage" is a neighborhood of the trace of a Brownian motion up to a time t, given by taking all points within a fixed distance of Brownian motion. It can be visualized as a cylinder of fixed radius the centerline of which is Brownian motion.

Wiener equation

A simple mathematical representation of Brownian motion, the Wiener equation, named after Wiener, assumes the current velocity of a fluid particle fluctuates randomly.

Wiener filter

For signal processing, the Wiener filter is a filter proposed by Wiener during the 1940s and published in 1942 as a classified document. Its purpose is to reduce the amount of noise present in a signal by comparison with an estimate of the desired noiseless signal. Wiener developed the filter at the Radiation Laboratory at MIT to predict the position of German bombers from radar reflections. What emerged was a mathematical theory of great generality—a theory for predicting the future as best one can on the basis of incomplete information about the past. It was a statistical theory that included applications that did not, strictly speaking, predict the future, but only tried to remove noise. It made use of Wiener's earlier work on integral equations and Fourier transforms.

Nonlinear control theory

Wiener studied polynomial chaos, a key piece of which is the Hermite-Laguerre expansion. This was developed in detail in Nonlinear Problems in Random Theory.

Wiener applied Hermite-Laguerre expansion to nonlinear system identification and control. Specifically, a nonlinear system can be identified by inputting a white noise process and computing the Hermite-Laguerre expansion of its output. The identified system can then be controlled.

Norbert Wiener in MIT, 1963

In mathematics

Wiener took a great interest in the mathematical theory of Brownian motion (named after Robert Brown) proving many results now widely known, such as the non-differentiability of the paths. Consequently, the one-dimensional version of Brownian motion was named the Wiener process. It is the best known of the Lévy processes, càdlàg stochastic processes with stationary statistically independent increments, and occurs frequently in pure and applied mathematics, physics and economics (e.g. on the stock-market).

Wiener's tauberian theorem, a 1932 result of Wiener, developed Tauberian theorems in summability theory, on the face of it a chapter of real analysis, by showing that most of the known results could be encapsulated in a principle taken from harmonic analysis. In its present formulation, the theorem of Wiener does not have any obvious association with Tauberian theorems, which deal with infinite series; the translation from results formulated for integrals, or using the language of functional analysis and Banach algebras, is however a relatively routine process.

The Paley–Wiener theorem relates growth properties of entire functions on C and Fourier transformation of Schwartz distributions of compact support.

The Wiener–Khinchin theorem, (also known as the Wiener – Khintchine theorem and the Khinchin – Kolmogorov theorem), states that the power spectral density of a wide-sense-stationary random process is the Fourier transform of the corresponding autocorrelation function.

An abstract Wiener space is a mathematical object in measure theory, used to construct a "decent", strictly positive and locally finite measure on an infinite-dimensional vector space. Wiener's original construction only applied to the space of real-valued continuous paths on the unit interval, known as classical Wiener space. Leonard Gross provided the generalization to the case of a general separable Banach space.

The notion of a Banach space itself was discovered independently by both Wiener and Stefan Banach at around the same time.

In popular culture

His work with Mary Brazier is referred to in Avis DeVoto's As Always, Julia.

A flagship named after him appears briefly in Citizen of the Galaxy by Robert Heinlein.

The song Dedicated to Norbert Wiener appears as the second track on the 1980 album Why? by G.G. Tonet (Luigi Tonet), released on the Italian It Why label.

Publications

Wiener wrote many books and hundreds of articles:

Wiener's papers are collected in the following works:

  • 1964, Selected Papers of Norbert Wiener. Cambridge Mass. 1964 (MIT Press & SIAM)
  • 1976–84, The Mathematical Work of Norbert Wiener. Masani P (ed) 4 vols, Camb. Mass. (MIT Press). This contains a complete collection of Wiener's mathematical papers with commentaries, in the following volumes: Vol. 1, Mathematical philosophy and foundations; potential theory; Brownian movement, Wiener integrals, ergodic and chaos theories, turbulence and statistical mechanics (ISBN 0262230704); Vol. 2, Generalized harmonic analysis and Tauberian theory, classical harmonic and complex analysis (ISBN 0262230925); Vol. 3, The Hopf-Wiener integral equation; Prediction and filtering; Quantum mechanics and relativity; Miscellaneous mathematical papers (ISBN 0262231077); and Vol. 4, Cybernetics, science, and society; Ethics, aesthetics, and literary criticism; Book reviews and obituaries. (ISBN 0262231239)

Fiction:

  • 1959, The Tempter. Random House (on Oliver Heaviside's invention for lower distortion on telegraph lines and his fight with AT&T for the proper recognition of his analysis)

Autobiography:

Under the name "W. Norbert":

See also

Notes

  1. A full bibliography is given by the Cybernetics Society.

References

  1. Norbert Wiener at the Mathematics Genealogy Project
  2. Leone Montagnini, Harmonies of Disorder – Norbert Wiener: A Mathematician-Philosopher of Our Time, Springer, 2017, p. 61.
  3. Wiener, Norbert (1948). Cybernetics: Or Control and Communication in the Animal and the Machine. Cambridge, Massachusetts: MIT Press.
  4. "The Human Use of Human Beings: Cybernetics Pioneer Norbert Wiener on Communication, Control, and the Morality of Our Machines". June 15, 2018.
  5. Research, AI (January 11, 2019). "The Beginnings of AI Research". world-information.org. Archived from the original on January 11, 2019. Retrieved January 11, 2019.
  6. ^ Leone Montagnini, Harmonies of Disorder: Norbert Wiener: A Mathematician-Philosopher of Our Time, Springer (2017)
  7. Wallace, Amy (1986). The prodigy. Internet Archive. New York : E.P. Dutton. p. 57. ISBN 978-0-525-24404-2.
  8. Conway & Siegelman 2005
  9. "Dr. Norbert Wiener Dead at 69; Known as Father of Automation". The New York Times. March 19, 1964. Retrieved January 14, 2024.
  10. Conway & Siegelman 2005, p. 45
  11. Conway & Siegelman 2005, pp. 41–43
  12. Conway & Siegelman 2005, p. 43
  13. Conway & Siegelman 2005, pp. 43–44
  14. Conway & Siegelman 2005, pp. 40, 45
  15. "Does the infinite corridor still have a poster of Norbert Wiener and cybernetics?". Retrieved October 27, 2019.
  16. Franklin biography Archived 2018-07-13 at the Wayback Machine. History.mcs.st-and.ac.uk. Retrieved on 2013-11-02.
  17. Adams, Colin; Hass, Joel; Thompson, Abigail (1998). How to Ace Calculus: The Streetwise Guide. Macmillan. p. 8. ISBN 9780716731603.
  18. Richard Harter
  19. Masani, Pesi R. (December 6, 2012), Norbert Wiener 1894–1964, Birkhäuser, p. 167, ISBN 978-3-0348-9252-0, archived from the original on February 22, 2017, retrieved March 20, 2016
  20. McCavitt, Mary Jane (September 2, 2009), Guide to the Papers of Norbert Wiener (PDF), Massachusetts Institute of Technology Libraries, p. 15, archived from the original (PDF) on November 12, 2015, retrieved March 20, 2016
  21. Conway & Siegelman 2005, p. 12
  22. Peter Galison (1994) The Ontology of the Enemy: Norbert Wiener and the Cybernetic Vision Critical Inquiry, Vol. 21, No. 1 (Autumn, 1994), pp. 228-266 (39 pages) JSTOR
  23. Conway & Siegelman 2005, pp. 223–7
  24. Arbib, Michael A (2000). "Warren McCulloch's Search for the Logic of the Nervous System". Perspectives in Biology and Medicine. 43 (2): 193–216. doi:10.1353/pbm.2000.0001. ISSN 1529-8795. PMID 10804585.
  25. Letters to Norbert Wiener in John von Neumann: Selected Letters, edited by Miklós Rédei, in History of Mathematics, Volume 27, jointly published by the American Mathematical Society and the London Mathematical Society, 2005
  26. Wiener, Norbert (January 1947). "A Scientist Rebels". Atlantic Monthly. p. 46. Archived from the original on October 26, 2018. Retrieved October 26, 2018.
  27. Heims, Steve Joshua (1980). John Von Neumann and Norbert Wiener: From Mathematics to the Technologies. Cambridge: MIT Press. ISBN 978-0262081054.
  28. O'Connor, John J.; Robertson, Edmund F., "Norbert Wiener", MacTutor History of Mathematics Archive, University of St Andrews
  29. Brown, Alexander F. (2006). "Dark Hero of the Information Age: In Search of Norbert Wiener, the Father of Cybernetics, Flo Conway and Jim Siegelman, Basic Books, New York, 2005. $27.50 (423 pp.). ISBN 0-7382-0368-8". Physics Today. 59 (5): 59–60. doi:10.1063/1.2216967.
  30. Jacobs, Alan (April 15, 2012). "The Lost World of Benzedrine". The Atlantic. Retrieved November 25, 2022.
  31. "National Book Awards – 1965" Archived 2019-01-31 at the Wayback Machine. National Book Foundation. Retrieved 2012-03-05.
  32. "Norbert Wiener Center for Harmonic Analysis and Applications". University of Maryland, College Park. Archived from the original on April 4, 2018. Retrieved September 24, 2009.
  33. Mandrekar, V.; Masani, P. R., eds. (1997). Proceedings of Symposia in Applied Mathematics Vol 52: Proceedings of the Norbert Wiener Centenary Congress 1994. Providence, Rhode Island: Michigan State University. p. 541. ISBN 978-0-8218-0452-0.
  34. John Von Neumann and Norbert Wiener: From Mathematics to the Technologies of Life and Death, Steve Joshua Heims, MIT Press, 1980
  35. Heims, Steve P. (April 1977). "Gregory Bateson and the mathematicians: From interdisciplinary interaction to societal functions". Journal of the History of the Behavioral Sciences. 13 (2): 141–159. doi:10.1002/1520-6696(197704)13:2<141::AID-JHBS2300130205>3.0.CO;2-G. PMID 325068.
  36. John Von Neumann and Norbert Wiener: From Mathematics to the Technologies of Life and Death, Steve Joshua Heims, MIT Press, 1980, p.183
  37. Norbert Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series, MIT Press, 1949. Originally published as a classified document in 1942
  38. Brick, Donald B. (March 1968). "On the Applicability of Wiener's Canonical Expansions". IEEE Transactions on Systems Science and Cybernetics. 4 (1): 29–38. doi:10.1109/TSSC.1968.300185. ISSN 0536-1567.
  39. Harris, G. H.; Lapidus, Leon. (June 1, 1967). "Identification of Nonlinear Systems". Industrial & Engineering Chemistry. 59 (6): 66–81. doi:10.1021/ie50690a012. ISSN 0019-7866.
  40. Wiener, Norbert (1923). "Note on a paper of M. Banach". Fund. Math. 4: 136–143. doi:10.4064/fm-4-1-136-143. See Albiac, F.; Kalton, N. (2006). Topics in Banach Space Theory. Graduate Texts in Mathematics. Vol. 233. New York: Springer. p. 15. ISBN 978-0-387-28141-4.
  41. Reardon, Joan. As Always, Julia. Houghton Mifflin, 2010. 223.
  42. Heinlein, Robert (1957). "14". Citizen of the Galaxy. Charles Scribner's Sons.
  43. "G.G. Tonet – Why?". Discogs. 1980. Archived from the original on February 25, 2020. Retrieved May 2, 2019.
  44. "Publications of Norbert Wiener". cybsoc.org. February 5, 2007. Archived from the original on February 5, 2007.
  45. Narasimha, R. (January 1999). "Review of Ex-Prodigy: My Childhood and Youth by Norbert Wiener". Resonance: 76–79. doi:10.1007/BF02837158. S2CID 123661339.

Further reading

Wiener's life and work has been examined in many works:

Books and theses:

Articles:

Archives:

External links

Subfields of and cyberneticians involved in cybernetics
Subfields
Cyberneticians
Systems science
System
types
Concepts
Theoretical
fields
Scientists
Applications
Organizations
United States National Medal of Science laureates
Behavioral and social science
1960s
1964
Neal Elgar Miller
1980s
1986
Herbert A. Simon
1987
Anne Anastasi
George J. Stigler
1988
Milton Friedman
1990s
1990
Leonid Hurwicz
Patrick Suppes
1991
George A. Miller
1992
Eleanor J. Gibson
1994
Robert K. Merton
1995
Roger N. Shepard
1996
Paul Samuelson
1997
William K. Estes
1998
William Julius Wilson
1999
Robert M. Solow
2000s
2000
Gary Becker
2003
R. Duncan Luce
2004
Kenneth Arrow
2005
Gordon H. Bower
2008
Michael I. Posner
2009
Mortimer Mishkin
2010s
2011
Anne Treisman
2014
Robert Axelrod
2015
Albert Bandura
2020s
2023
Huda Akil
Shelley E. Taylor
2025
Larry Bartels
Biological sciences
1960s
1963
C. B. van Niel
1964
Theodosius Dobzhansky
Marshall W. Nirenberg
1965
Francis P. Rous
George G. Simpson
Donald D. Van Slyke
1966
Edward F. Knipling
Fritz Albert Lipmann
William C. Rose
Sewall Wright
1967
Kenneth S. Cole
Harry F. Harlow
Michael Heidelberger
Alfred H. Sturtevant
1968
Horace Barker
Bernard B. Brodie
Detlev W. Bronk
Jay Lush
Burrhus Frederic Skinner
1969
Robert Huebner
Ernst Mayr
1970s
1970
Barbara McClintock
Albert B. Sabin
1973
Daniel I. Arnon
Earl W. Sutherland Jr.
1974
Britton Chance
Erwin Chargaff
James V. Neel
James Augustine Shannon
1975
Hallowell Davis
Paul Gyorgy
Sterling B. Hendricks
Orville Alvin Vogel
1976
Roger Guillemin
Keith Roberts Porter
Efraim Racker
E. O. Wilson
1979
Robert H. Burris
Elizabeth C. Crosby
Arthur Kornberg
Severo Ochoa
Earl Reece Stadtman
George Ledyard Stebbins
Paul Alfred Weiss
1980s
1981
Philip Handler
1982
Seymour Benzer
Glenn W. Burton
Mildred Cohn
1983
Howard L. Bachrach
Paul Berg
Wendell L. Roelofs
Berta Scharrer
1986
Stanley Cohen
Donald A. Henderson
Vernon B. Mountcastle
George Emil Palade
Joan A. Steitz
1987
Michael E. DeBakey
Theodor O. Diener
Harry Eagle
Har Gobind Khorana
Rita Levi-Montalcini
1988
Michael S. Brown
Stanley Norman Cohen
Joseph L. Goldstein
Maurice R. Hilleman
Eric R. Kandel
Rosalyn Sussman Yalow
1989
Katherine Esau
Viktor Hamburger
Philip Leder
Joshua Lederberg
Roger W. Sperry
Harland G. Wood
1990s
1990
Baruj Benacerraf
Herbert W. Boyer
Daniel E. Koshland Jr.
Edward B. Lewis
David G. Nathan
E. Donnall Thomas
1991
Mary Ellen Avery
G. Evelyn Hutchinson
Elvin A. Kabat
Robert W. Kates
Salvador Luria
Paul A. Marks
Folke K. Skoog
Paul C. Zamecnik
1992
Maxine Singer
Howard Martin Temin
1993
Daniel Nathans
Salome G. Waelsch
1994
Thomas Eisner
Elizabeth F. Neufeld
1995
Alexander Rich
1996
Ruth Patrick
1997
James Watson
Robert A. Weinberg
1998
Bruce Ames
Janet Rowley
1999
David Baltimore
Jared Diamond
Lynn Margulis
2000s
2000
Nancy C. Andreasen
Peter H. Raven
Carl Woese
2001
Francisco J. Ayala
George F. Bass
Mario R. Capecchi
Ann Graybiel
Gene E. Likens
Victor A. McKusick
Harold Varmus
2002
James E. Darnell
Evelyn M. Witkin
2003
J. Michael Bishop
Solomon H. Snyder
Charles Yanofsky
2004
Norman E. Borlaug
Phillip A. Sharp
Thomas E. Starzl
2005
Anthony Fauci
Torsten N. Wiesel
2006
Rita R. Colwell
Nina Fedoroff
Lubert Stryer
2007
Robert J. Lefkowitz
Bert W. O'Malley
2008
Francis S. Collins
Elaine Fuchs
J. Craig Venter
2009
Susan L. Lindquist
Stanley B. Prusiner
2010s
2010
Ralph L. Brinster
Rudolf Jaenisch
2011
Lucy Shapiro
Leroy Hood
Sallie Chisholm
2012
May Berenbaum
Bruce Alberts
2013
Rakesh K. Jain
2014
Stanley Falkow
Mary-Claire King
Simon Levin
2020s
2023
Gebisa Ejeta
Eve Marder
Gregory Petsko
Sheldon Weinbaum
2025
Bonnie Bassler
Angela Belcher
Helen Blau
Emery N. Brown
G. David Tilman
Teresa Woodruff
Chemistry
1960s
1964
Roger Adams
1980s
1982
F. Albert Cotton
Gilbert Stork
1983
Roald Hoffmann
George C. Pimentel
Richard N. Zare
1986
Harry B. Gray
Yuan Tseh Lee
Carl S. Marvel
Frank H. Westheimer
1987
William S. Johnson
Walter H. Stockmayer
Max Tishler
1988
William O. Baker
Konrad E. Bloch
Elias J. Corey
1989
Richard B. Bernstein
Melvin Calvin
Rudolph A. Marcus
Harden M. McConnell
1990s
1990
Elkan Blout
Karl Folkers
John D. Roberts
1991
Ronald Breslow
Gertrude B. Elion
Dudley R. Herschbach
Glenn T. Seaborg
1992
Howard E. Simmons Jr.
1993
Donald J. Cram
Norman Hackerman
1994
George S. Hammond
1995
Thomas Cech
Isabella L. Karle
1996
Norman Davidson
1997
Darleane C. Hoffman
Harold S. Johnston
1998
John W. Cahn
George M. Whitesides
1999
Stuart A. Rice
John Ross
Susan Solomon
2000s
2000
John D. Baldeschwieler
Ralph F. Hirschmann
2001
Ernest R. Davidson
Gábor A. Somorjai
2002
John I. Brauman
2004
Stephen J. Lippard
2005
Tobin J. Marks
2006
Marvin H. Caruthers
Peter B. Dervan
2007
Mostafa A. El-Sayed
2008
Joanna Fowler
JoAnne Stubbe
2009
Stephen J. Benkovic
Marye Anne Fox
2010s
2010
Jacqueline K. Barton
Peter J. Stang
2011
Allen J. Bard
M. Frederick Hawthorne
2012
Judith P. Klinman
Jerrold Meinwald
2013
Geraldine L. Richmond
2014
A. Paul Alivisatos
2025
R. Lawrence Edwards
Engineering sciences
1960s
1962
Theodore von Kármán
1963
Vannevar Bush
John Robinson Pierce
1964
Charles S. Draper
Othmar H. Ammann
1965
Hugh L. Dryden
Clarence L. Johnson
Warren K. Lewis
1966
Claude E. Shannon
1967
Edwin H. Land
Igor I. Sikorsky
1968
J. Presper Eckert
Nathan M. Newmark
1969
Jack St. Clair Kilby
1970s
1970
George E. Mueller
1973
Harold E. Edgerton
Richard T. Whitcomb
1974
Rudolf Kompfner
Ralph Brazelton Peck
Abel Wolman
1975
Manson Benedict
William Hayward Pickering
Frederick E. Terman
Wernher von Braun
1976
Morris Cohen
Peter C. Goldmark
Erwin Wilhelm Müller
1979
Emmett N. Leith
Raymond D. Mindlin
Robert N. Noyce
Earl R. Parker
Simon Ramo
1980s
1982
Edward H. Heinemann
Donald L. Katz
1983
Bill Hewlett
George Low
John G. Trump
1986
Hans Wolfgang Liepmann
Tung-Yen Lin
Bernard M. Oliver
1987
Robert Byron Bird
H. Bolton Seed
Ernst Weber
1988
Daniel C. Drucker
Willis M. Hawkins
George W. Housner
1989
Harry George Drickamer
Herbert E. Grier
1990s
1990
Mildred Dresselhaus
Nick Holonyak Jr.
1991
George H. Heilmeier
Luna B. Leopold
H. Guyford Stever
1992
Calvin F. Quate
John Roy Whinnery
1993
Alfred Y. Cho
1994
Ray W. Clough
1995
Hermann A. Haus
1996
James L. Flanagan
C. Kumar N. Patel
1998
Eli Ruckenstein
1999
Kenneth N. Stevens
2000s
2000
Yuan-Cheng B. Fung
2001
Andreas Acrivos
2002
Leo Beranek
2003
John M. Prausnitz
2004
Edwin N. Lightfoot
2005
Jan D. Achenbach
2006
Robert S. Langer
2007
David J. Wineland
2008
Rudolf E. Kálmán
2009
Amnon Yariv
2010s
2010
Shu Chien
2011
John B. Goodenough
2012
Thomas Kailath
2020s
2023
Subra Suresh
2025
John Dabiri
Mathematical, statistical, and computer sciences
1960s
1963
Norbert Wiener
1964
Solomon Lefschetz
H. Marston Morse
1965
Oscar Zariski
1966
John Milnor
1967
Paul Cohen
1968
Jerzy Neyman
1969
William Feller
1970s
1970
Richard Brauer
1973
John Tukey
1974
Kurt Gödel
1975
John W. Backus
Shiing-Shen Chern
George Dantzig
1976
Kurt Otto Friedrichs
Hassler Whitney
1979
Joseph L. Doob
Donald E. Knuth
1980s
1982
Marshall H. Stone
1983
Herman Goldstine
Isadore Singer
1986
Peter Lax
Antoni Zygmund
1987
Raoul Bott
Michael Freedman
1988
Ralph E. Gomory
Joseph B. Keller
1989
Samuel Karlin
Saunders Mac Lane
Donald C. Spencer
1990s
1990
George F. Carrier
Stephen Cole Kleene
John McCarthy
1991
Alberto Calderón
1992
Allen Newell
1993
Martin David Kruskal
1994
John Cocke
1995
Louis Nirenberg
1996
Richard Karp
Stephen Smale
1997
Shing-Tung Yau
1998
Cathleen Synge Morawetz
1999
Felix Browder
Ronald R. Coifman
2000s
2000
John Griggs Thompson
Karen Uhlenbeck
2001
Calyampudi R. Rao
Elias M. Stein
2002
James G. Glimm
2003
Carl R. de Boor
2004
Dennis P. Sullivan
2005
Bradley Efron
2006
Hyman Bass
2007
Leonard Kleinrock
Andrew J. Viterbi
2009
David B. Mumford
2010s
2010
Richard A. Tapia
S. R. Srinivasa Varadhan
2011
Solomon W. Golomb
Barry Mazur
2012
Alexandre Chorin
David Blackwell
2013
Michael Artin
2020s
2025
Ingrid Daubechies
Cynthia Dwork
Physical sciences
1960s
1963
Luis W. Alvarez
1964
Julian Schwinger
Harold Urey
Robert Burns Woodward
1965
John Bardeen
Peter Debye
Leon M. Lederman
William Rubey
1966
Jacob Bjerknes
Subrahmanyan Chandrasekhar
Henry Eyring
John H. Van Vleck
Vladimir K. Zworykin
1967
Jesse Beams
Francis Birch
Gregory Breit
Louis Hammett
George Kistiakowsky
1968
Paul Bartlett
Herbert Friedman
Lars Onsager
Eugene Wigner
1969
Herbert C. Brown
Wolfgang Panofsky
1970s
1970
Robert H. Dicke
Allan R. Sandage
John C. Slater
John A. Wheeler
Saul Winstein
1973
Carl Djerassi
Maurice Ewing
Arie Jan Haagen-Smit
Vladimir Haensel
Frederick Seitz
Robert Rathbun Wilson
1974
Nicolaas Bloembergen
Paul Flory
William Alfred Fowler
Linus Carl Pauling
Kenneth Sanborn Pitzer
1975
Hans A. Bethe
Joseph O. Hirschfelder
Lewis Sarett
Edgar Bright Wilson
Chien-Shiung Wu
1976
Samuel Goudsmit
Herbert S. Gutowsky
Frederick Rossini
Verner Suomi
Henry Taube
George Uhlenbeck
1979
Richard P. Feynman
Herman Mark
Edward M. Purcell
John Sinfelt
Lyman Spitzer
Victor F. Weisskopf
1980s
1982
Philip W. Anderson
Yoichiro Nambu
Edward Teller
Charles H. Townes
1983
E. Margaret Burbidge
Maurice Goldhaber
Helmut Landsberg
Walter Munk
Frederick Reines
Bruno B. Rossi
J. Robert Schrieffer
1986
Solomon J. Buchsbaum
H. Richard Crane
Herman Feshbach
Robert Hofstadter
Chen-Ning Yang
1987
Philip Abelson
Walter Elsasser
Paul C. Lauterbur
George Pake
James A. Van Allen
1988
D. Allan Bromley
Paul Ching-Wu Chu
Walter Kohn
Norman Foster Ramsey Jr.
Jack Steinberger
1989
Arnold O. Beckman
Eugene Parker
Robert Sharp
Henry Stommel
1990s
1990
Allan M. Cormack
Edwin M. McMillan
Robert Pound
Roger Revelle
1991
Arthur L. Schawlow
Ed Stone
Steven Weinberg
1992
Eugene M. Shoemaker
1993
Val Fitch
Vera Rubin
1994
Albert Overhauser
Frank Press
1995
Hans Dehmelt
Peter Goldreich
1996
Wallace S. Broecker
1997
Marshall Rosenbluth
Martin Schwarzschild
George Wetherill
1998
Don L. Anderson
John N. Bahcall
1999
James Cronin
Leo Kadanoff
2000s
2000
Willis E. Lamb
Jeremiah P. Ostriker
Gilbert F. White
2001
Marvin L. Cohen
Raymond Davis Jr.
Charles Keeling
2002
Richard Garwin
W. Jason Morgan
Edward Witten
2003
G. Brent Dalrymple
Riccardo Giacconi
2004
Robert N. Clayton
2005
Ralph A. Alpher
Lonnie Thompson
2006
Daniel Kleppner
2007
Fay Ajzenberg-Selove
Charles P. Slichter
2008
Berni Alder
James E. Gunn
2009
Yakir Aharonov
Esther M. Conwell
Warren M. Washington
2010s
2011
Sidney Drell
Sandra Faber
Sylvester James Gates
2012
Burton Richter
Sean C. Solomon
2014
Shirley Ann Jackson
2020s
2023
Barry Barish
Myriam Sarachik
2025
Richard Alley
Wendy Freedman
Keivan Stassun
Categories:
Norbert Wiener Add topic