Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license.
Give it a read and then ask your questions in the chat.
We can research this topic together.
This article needs additional or more specific categories. Please help out by adding categories to it so that it can be listed with similar articles. (August 2021)
Henry King, Kevin Knudson, Neža Mramor, Birth and death in discrete Morse theory, arXiv:0808.0051
Borut Jurčič Zlobec, Neža Mramor Kosta, Geometric constructions on cycles in R'n, arXiv:1311.5656
AYALA, Rafael, VILCHES, Jose Antonio, JERŠE, Gregor, MRAMOR KOSTA, Neža. Discrete gradient fields on infinite complexes. Discrete and continuous dynamical systems
JERŠE, Gregor, MRAMOR KOSTA, Neža. Ascending and descending regions of a discrete Morse function. Computational geometry
MRAMOR KOSTA, Neža, TRENKLEROVÁ, Eva. Basic sets in the digital plane. Lecture notes in computer science, ISSN 0302-9743, 4910, 2008, str. 376–387.
JAWOROWSKI, Jan, MRAMOR KOSTA, Neža. The degree of maps of free G-manifolds. Journal of fixed point theory and its applications, ISSN 1661-7738, 2007, vol. 2, no. 2, str. 209–213.
KING, Henry C., KNUDSON, Kevin, MRAMOR KOSTA, Neža. Generating discrete Morse functions from point data. Experimental mathematics, ISSN 1058-6458, 2005, vol. 14, no. 4, str. 435–444.
JURČIČ-ZLOBEC, Borut, MRAMOR KOSTA, Neža. Geometric constructions on cycles. Rocky Mountain journal of mathematics.
CENCELJ, Matija, MRAMOR KOSTA, Neža, VAVPETIČ, Aleš. G-complexes with a compatible CW structure. Journal of mathematics of Kyoto University.