Misplaced Pages

Neptune trojan

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Neptune Trojan) Asteroid orbiting the Sun near one of the stable Lagrangian points of Neptune
Neptune's L4 trojans with plutinos for reference.
  Neptune trojans (selection)
  · 2001 QR322
  · 2005 TN53
  · 2007 VL305
  Plutinos
  · Pluto
  · Orcus
  · Ixion
Types of distant minor planets

Neptune trojans are bodies that orbit the Sun near one of the stable Lagrangian points of Neptune, similar to the trojans of other planets. They therefore have approximately the same orbital period as Neptune and follow roughly the same orbital path. Thirty-one Neptune trojans are currently known, of which 27 orbit near the Sun–Neptune L4 Lagrangian point 60° ahead of Neptune and four orbit near Neptune's L5 region 60° behind Neptune. The Neptune trojans are termed 'trojans' by analogy with the Jupiter trojans.

The discovery of 2005 TN53 in a high-inclination (>25°) orbit was significant, because it suggested a "thick" cloud of trojans (Jupiter trojans have inclinations up to 40°), which is indicative of freeze-in capture instead of in situ or collisional formation. It is suspected that large (radius ≈ 100 km) Neptune trojans could outnumber Jupiter trojans by an order of magnitude.

In 2010, the discovery of the first known L5 Neptune trojan, 2008 LC18, was announced. Neptune's trailing L5 region is currently very difficult to observe because it is along the line of sight to the center of the Milky Way, an area of the sky crowded with stars.

Discovery and exploration

In 2001, the first Neptune trojan was discovered, (612243) 2001 QR322, near Neptune's L4 region, and with it the fifth known populated stable reservoir of small bodies in the Solar System. In 2005, the discovery of the high-inclination trojan 2005 TN53 has indicated that the Neptune trojans populate thick clouds, which has constrained their possible origins (see below).

On August 12, 2010, the first L5 trojan, 2008 LC18, was announced. It was discovered by a dedicated survey that scanned regions where the light from the stars near the Galactic Center is obscured by dust clouds. This suggests that large L5 trojans are as common as large L4 trojans, to within uncertainty, further constraining models about their origins (see below).

It would have been possible for the New Horizons spacecraft to investigate L5 Neptune trojans discovered by 2014, when it passed through this region of space en route to Pluto. Some of the patches where the light from the Galactic Center is obscured by dust clouds are along New Horizons's flight path, allowing detection of objects that the spacecraft could image. 2011 HM102, the highest-inclination Neptune trojan known, was just bright enough for New Horizons to observe it in end-2013 at a distance of 1.2 AU. However, New Horizons may not have had sufficient downlink bandwidth, so it was eventually decided to give precedence to the preparations for the Pluto flyby.

Dynamics and origin

An animation showing the path of six of Neptune's L4 trojans in a rotating frame with a period equal to Neptune's orbital period. Neptune is held stationary. (Click to view.)

The orbits of Neptune trojans are highly stable; Neptune may have retained up to 50% of the original post-migration trojan population over the age of the Solar System. Neptune's L5 can host stable trojans equally well as its L4. Neptune trojans can librate up to 30° from their associated Lagrangian points with a 10,000-year period. Neptune trojans that escape enter orbits similar to centaurs. Although Neptune cannot currently capture stable trojans, roughly 2.8% of the centaurs within 34 AU are predicted to be Neptune co-orbitals. Of these, 54% would be in horseshoe orbits, 10% would be quasi-satellites, and 36% would be trojans (evenly split between the L4 and L5 groups).

The unexpected high-inclination trojans are the key to understanding the origin and evolution of the population as a whole. The existence of high-inclination Neptune trojans points to a capture during planetary migration instead of in situ or collisional formation. The estimated equal number of large L5 and L4 trojans indicates that there was no gas drag during capture and points to a common capture mechanism for both L4 and L5 trojans. The capture of Neptune trojans during a migration of the planets occurs via process similar to the chaotic capture of Jupiter trojans in the Nice model. When Uranus and Neptune are near but not in a mean-motion resonance the locations where Uranus passes Neptune can circulate with a period that is in resonance with the libration periods of Neptune trojans. This results in repeated perturbations that increase the libration of existing trojans causing their orbits to become unstable. This process is reversible allowing new trojans to be captured when the planetary migration continues. For high-inclination trojans to be captured the migration must have been slow, or their inclinations must have been acquired previously.

Colors

The first four discovered Neptune trojans have similar colors. They are modestly red, slightly redder than the gray Kuiper belt objects, but not as extremely red as the high-perihelion cold classical Kuiper belt objects. This is similar to the colors of the blue lobe of the centaur color distribution, the Jupiter trojans, the irregular satellites of the gas giants, and possibly the comets, which is consistent with a similar origin of these populations of small Solar System bodies.

The Neptune trojans are too faint to efficiently observe spectroscopically with current technology, which means that a large variety of surface compositions are compatible with the observed colors.

Several Neptunian Trojans have been observed to have very-red colors similar to cold classical Kuiper belt objects.

Naming

In 2015, the IAU adopted a new naming scheme for Neptune trojans, which are to be named after Amazons, with no differentiation between objects in L4 and L5. The Amazons were an all-female warrior tribe that fought in the Trojan War on the side of the Trojans against the Greeks. As of 2019, the named Neptune trojans are 385571 Otrera (after Otrera, the first Amazonian queen in Greek mythology) and 385695 Clete (after Clete, an Amazon and the attendant to the Amazons' queen Penthesilea, who led the Amazons in the Trojan war).

Members

The amount of high-inclination objects in such a small sample, in which relatively fewer high-inclination Neptune trojans are known due to observational biases, implies that high-inclination trojans may significantly outnumber low-inclination trojans. The ratio of high- to low-inclination Neptune trojans is estimated to be about 4:1. Assuming albedos of 0.05, there are an expected 400+250
−200 Neptune trojans with radii above 40 km in Neptune's L4. This would indicate that large Neptune trojans are 5 to 20 times more abundant than Jupiter trojans, depending on their albedos. There may be relatively fewer smaller Neptune trojans, which could be because these fragment more readily. Large L5 trojans are estimated to be as common as large L4 trojans.

(612243) 2001 QR322 and 2008 LC18 display significant dynamical instability. This means they could have been captured after planetary migration, but may as well be a long-term member that happens not to be perfectly dynamically stable.

As of September 2023, 31 Neptune trojans are known, of which 27 orbit near the SunNeptune L4 Lagrangian point 60° ahead of Neptune, 4 orbit near Neptune's L5 region 60° behind Neptune, and one orbits on the opposite side of Neptune (L3) but frequently changes location relative to Neptune to L4 and L5. These are listed in the following table. It is constructed from the list of Neptune trojans maintained by the IAU Minor Planet Center and with diameters from Sheppard and Trujillo's paper on 2008 LC18, unless otherwise noted.

L3 Members

Name Prov.
designation
Lagrangian
point
q (AU) Q (AU) e i (°) Abs. mag Diameter
(km)
Year of
identification
Notes MPC
(316179) 2010 EN65 L3 21.109 40.613 0.310 19.2 7.2 ~220 2010 Jumping trojan MPC

L4 Members

Name Prov.
designation
Lagrangian
point
q (AU) Q (AU) e i (°) Abs. mag Diameter
(km)
Year of
identification
Notes MPC
385571 Otrera 2004 UP10 L4 29.318 30.942 0.031 1.4 8.8 ~100 2004 First Neptune trojan numbered and named MPC
385695 Clete 2005 TO74 L4 28.469 31.771 0.052 5.3 8.3 ~130 2005 MPC
(527604) 2007 VL305 L4 28.130 32.028 0.065 28.1 8.5 ~120 2007 MPC
(530664) 2011 SO277 L4 29.622 30.503 0.009 9.6 7.8 ~170 2016 MPC
(530930) 2011 WG157 L4 29.064 30.878 0.025 22.3 7.3 ~210 2016 MPC
(612243) 2001 QR322 L4 29.404 31.011 0.031 1.3 8.1 ~140 2001 First Neptune trojan discovered, unstable Trojan
(613490) 2006 RJ103 L4 29.077 31.014 0.028 8.2 7.6 ~180 2006 MPC
2005 TN53 L4 28.092 32.162 0.067 25.0 9.0 ~90 2005 First high-inclination trojan discovered MPC
(666739) 2010 TS191 L4 28.608 31.253 0.048 6.6 8.1 ~140 2016 MPC
2010 TT191 L4 27.913 32.189 0.070 4.3 7.8 ~160 2016 MPC
2012 UV177 L4 27.806 32.259 0.072 20.8 9.3 ~80 2014 MPC
2012 UD185 L4 28.794 31.538 0.042 28.4 7.6 ~180 2019 MPC
2013 RL124 L4 29.366 30.783 0.028 10.1 8.8 ~100 2020 MPC
2013 RC158 L4 28.611 31.784 0.053 7.5 8.9 ~100 2021 MPC
2013 TZ187 L4 28.092 32.135 0.066 13.1 8.2 ~140 2020 MPC
2013 TK227 L4 27.787 32.683 0.081 18.6 9.6 ~70 2021 MPC
2013 VX30 L4 27.563 32.525 0.087 31.3 8.3 ~130 2018 MPC
2014 QO441 L4 26.961 33.215 0.101 18.8 8.3 ~130 2014 Most eccentric stable Neptune trojan MPC
2014 QP441 L4 28.137 31.971 0.067 19.4 9.3 ~80 2015 MPC
2014 RO74 L4 28.426 31.614 0.050 29.5 8.4 ~120 2020 MPC
2014 SC374 L4 27.038 33.060 0.096 33.7 8.2 ~140 2020 MPC
2014 UU240 L4 28.661 31.457 0.045 35.8 8.2 ~140 2018 MPC
2014 YB92 L4 27.309 33.243 0.098 30.8 8.6 ~110 2021 MPC
2015 RW277 L4 27.742 32.236 0.074 30.8 10.2 ~50 2018 MPC
2015 VV165 L4 27.513 32.497 0.086 16.9 9.0 ~90 2018 MPC
2015 VW165 L4 28.488 31.488 0.049 5.0 8.4 ~120 2018 MPC
2015 VX165 L4 27.612 32.327 0.073 17.2 9.2 ~90 2018 MPC
2015 VU207 L4 29.211 31.174 0.033 38.9 7.3 ~210 2021 Highest known inclination MPC

L5 Members

Name Prov.
designation
Lagrangian
point
q (AU) Q (AU) e i (°) Abs. mag Diameter
(km)
Year of
identification
Notes MPC
2004 KV18 L5 24.553 35.851 0.183 13.6 8.7 110 2011 Temporary Neptune trojan MPC
2008 LC18 L5 27.365 32.479 0.079 27.6 8.2 ~130 2008 First L5 trojan discovered MPC
2011 HM102 L5 27.662 32.455 0.083 29.4 8.1 ~130 2012 MPC
2013 KY18 L5 26.624 34.084 0.124 6.6 6.8 ~260 2016 Stability uncertain MPC


(613100) 2005 TN74 and (309239) 2007 RW10 were thought to be Neptune trojans at the time of their discovery, but further observations have disconfirmed their membership. 2005 TN74 is currently thought to be in a 3:5 resonance with Neptune. (309239) 2007 RW10 is currently following a quasi-satellite loop around Neptune.

See also

Notes

  1. After the asteroid belt, the Jupiter trojans, the trans-Neptunian objects and the Mars trojans.
  2. assuming an albedo of 0.05
  3. assuming an albedo of 0.05
  4. assuming an albedo of 0.05

References

  1. ^ "List Of Neptune Trojans". Minor Planet Center. Archived from the original on 2012-05-25. Retrieved 2012-08-09.
  2. ^ Sheppard, Scott S.; Trujillo, Chadwick A. (June 2006). "A Thick Cloud of Neptune Trojans and Their Colors" (PDF). Science. 313 (5786): 511–514. Bibcode:2006Sci...313..511S. doi:10.1126/science.1127173. PMID 16778021. S2CID 35721399. Archived (PDF) from the original on 2010-07-16. Retrieved 2008-02-26.
  3. Jewitt, David C.; Trujillo, Chadwick A.; Luu, Jane X. (2000). "Population and size distribution of small Jovian Trojan asteroids". The Astronomical Journal. 120 (2): 1140–7. arXiv:astro-ph/0004117. Bibcode:2000AJ....120.1140J. doi:10.1086/301453. S2CID 119450236.
  4. E. I. Chiang and Y. Lithwick Neptune Trojans as a Testbed for Planet Formation, The Astrophysical Journal, 628, pp. 520–532 Preprint
  5. ^ David Powell (30 January 2007). "Neptune May Have Thousands of Escorts". Space.com. Archived from the original on 15 August 2008. Retrieved 2007-03-08.
  6. ^ Scott S. Sheppard (2010-08-12). "Trojan Asteroid Found in Neptune's Trailing Gravitational Stability Zone". Carnegie Institution of Washington. Archived from the original on 2010-08-15. Retrieved 2007-12-28.
  7. ^ Sheppard, Scott S.; Trujillo, Chadwick A. (2010-08-12). "Detection of a Trailing (L5) Neptune Trojan". Science. 329 (5997). AAAS: 1304. Bibcode:2010Sci...329.1304S. doi:10.1126/science.1189666. PMID 20705814. S2CID 7657932.
  8. Parker, Alex (2012-10-09). "Citizen "Ice Hunters" help find a Neptune Trojan target for New Horizons". www.planetary.org/blogs. The Planetary Society. Archived from the original on 2012-11-01. Retrieved 2012-10-09.
  9. Stern, Alan (May 1, 2006). "Where Is the Centaur Rocket?". The PI's Perspective. Johns Hopkins APL. Archived from the original on September 1, 2006. Retrieved June 11, 2006.
  10. Parker, Alex (April 30, 2013). "2011 HM102: A new companion for Neptune". The Planetary Society. Archived from the original on October 9, 2014. Retrieved October 7, 2014.
  11. ^ Horner, J., Lykawka, P. S., Bannister, M. T., & Francis, P. 2008 LC18: a potentially unstable Neptune Trojan Accepted to appear in Monthly Notices of the Royal Astronomical Society
  12. Alexandersen, M.; Gladman, B.; Greenstreet, S.; Kavelaars, J. J.; Petit, J. -M.; Gwyn, S. (2013). "A Uranian Trojan and the Frequency of Temporary Giant-Planet Co-Orbitals". Science. 341 (6149): 994–997. arXiv:1303.5774. Bibcode:2013Sci...341..994A. doi:10.1126/science.1238072. PMID 23990557. S2CID 39044607.
  13. Kortenkamp, Stephen J.; Malhotra, Renu; Michtchenko, Tatiana (2004). "Survival of Trojan-type companions of Neptune during primordial planet migration". Icarus. 167 (2): 347–359. arXiv:astro-ph/0305572. Bibcode:2004Icar..167..347K. doi:10.1016/j.icarus.2003.09.021. S2CID 2046901.
  14. Nesvorný, David; Vokrouhlický, David (2009). "Chaotic Capture of Neptune Trojans". The Astronomical Journal. 137 (6): 5003–5011. Bibcode:2009AJ....137.5003N. CiteSeerX 10.1.1.693.4387. doi:10.1088/0004-6256/137/6/5003. S2CID 54186674.
  15. Gomes, R.; Nesvorny, D. (2016). "Neptune trojan formation during planetary instability and migration". Astronomy & Astrophysics. 592: A146. Bibcode:2016A&A...592A.146G. doi:10.1051/0004-6361/201527757.
  16. Parker, Alex (2015). "The intrinsic Neptune Trojan orbit distribution: Implications for the primordial disk and planet migration". Icarus. 247: 112–125. arXiv:1409.6735. Bibcode:2015Icar..247..112P. doi:10.1016/j.icarus.2014.09.043. S2CID 119203006.
  17. Bolin, B. T.; Fremling, C.; Morbidelli, A.; Noll, K. S.; van Roestel, J.; Deibert, E. K.; et al. (February 2023). "Keck, gemini, and palomar 200-inch visible photometry of red and very-red neptunian trojans". Monthly Notices of the Royal Astronomical Society: Letters. 521 (1): L29 – L33. arXiv:2302.04280. doi:10.1093/mnrasl/slad018.
  18. Ticha, J.; et al. (10 April 2018). "DIVISION F / Working Group for Small Body Nomenclature Working Group for Small Body Nomenclature. THE TRIENNIAL REPORT (2015 Sept 1 – 2018 Feb 15)" (PDF). IAU. Retrieved 25 August 2018.
  19. "385571 Otrera (2004 UP10)". Minor Planet Center. 30 November 2015. Retrieved 4 August 2017.
  20. "385695 Clete (2005 TO74)". Minor Planet Center. 18 May 2019. Retrieved 10 June 2019.
  21. ^ "Conversion of Absolute Magnitude to Diameter". www.physics.sfasu.edu. Archived from the original on 23 March 2010. Retrieved 29 April 2018.
  22. Gerdes, D. W.; Jennings, R. J.; Bernstein, G. M.; Sako, M.; Adams, F.; Goldstein, D.; Kessler, R.; Abbott, T.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Neto, A. Fausti; Flaugher, B.; Frieman, J.; Gaztanaga, E.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Maia, M. A. G.; March, M.; Martini, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Santiago, B.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarlé, G.; Thaler, J.; Walker, A. R.; Wester, W.; Zhang, Y. (28 January 2016). "Observation of Two New L4 Neptune Trojans in the Dark Energy Survey Supernova Fields". The Astronomical Journal. 151 (2): 39. arXiv:1507.05177. Bibcode:2016AJ....151...39G. doi:10.3847/0004-6256/151/2/39. S2CID 55326461.
  23. MPEC 2005-U97 : 2005 TN74, 2005 TO74 Minor Planet Center
  24. "Distant EKOs, 55". Archived from the original on 2013-05-25. Retrieved 2012-07-24.
  25. "Orbit and Astrometry for 05TN74". www.boulder.swri.edu. Archived from the original on 29 April 2018. Retrieved 29 April 2018.
  26. de la Fuente Marcos; de la Fuente Marcos (2012). "(309239) 2007 RW10: a large temporary quasi-satellite of Neptune". Astronomy and Astrophysics Letters. 545: L9. arXiv:1209.1577. Bibcode:2012A&A...545L...9D. doi:10.1051/0004-6361/201219931. S2CID 118374080.

External links

Neptune trojans
L4
L5
Jumping trojans
Neptune
Geography
True color NASA image of Neptune
True color NASA image of Neptune
Moons
Astronomy
Discovery
General
Trojans
Exploration
Past
Proposals
Not selected
Related
Asteroids
Main
Distribution
Classification
Orbital
Spectral
Tholen
SMASS
Exploration
Lists
Related
Small Solar System bodies
Minor planets
Asteroid
Distant minor planet
Comets
Other
Portals: Categories:
Neptune trojan Add topic