Misplaced Pages

Nice name

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article is about mathematics. For the name "Nice", see Nice (disambiguation).

In set theory, a nice name is used in forcing to impose an upper bound on the number of subsets in the generic model. It is used in the context of forcing to prove independence results in set theory such as Easton's theorem.

Formal definition

Let M {\displaystyle M\models } ZFC be transitive, ( P , < ) {\displaystyle (\mathbb {P} ,<)} a forcing notion in M {\displaystyle M} , and suppose G P {\displaystyle G\subseteq \mathbb {P} } is generic over M {\displaystyle M} .

Then for any P {\displaystyle \mathbb {P} } -name τ {\displaystyle \tau } in M {\displaystyle M} , we say that η {\displaystyle \eta } is a nice name for a subset of τ {\displaystyle \tau } if η {\displaystyle \eta } is a P {\displaystyle \mathbb {P} } -name satisfying the following properties:

(1) dom ( η ) dom ( τ ) {\displaystyle \operatorname {dom} (\eta )\subseteq \operatorname {dom} (\tau )}

(2) For all P {\displaystyle \mathbb {P} } -names σ M {\displaystyle \sigma \in M} , { p P | σ , p η } {\displaystyle \{p\in \mathbb {P} |\langle \sigma ,p\rangle \in \eta \}} forms an antichain.

(3) (Natural addition): If σ , p η {\displaystyle \langle \sigma ,p\rangle \in \eta } , then there exists q p {\displaystyle q\geq p} in P {\displaystyle \mathbb {P} } such that σ , q τ {\displaystyle \langle \sigma ,q\rangle \in \tau } .

References

  • Kunen, Kenneth (1980). Set theory: an introduction to independence proofs. Studies in logic and the foundations of mathematics. Vol. 102. Elsevier. p. 208. ISBN 0-444-85401-0.


Stub icon

This set theory-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Nice name Add topic