Misplaced Pages

Operad algebra

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In algebra, an operad algebra is an "algebra" over an operad. It is a generalization of an associative algebra over a commutative ring R, with an operad replacing R.

Definitions

Given an operad O (say, a symmetric sequence in a symmetric monoidal ∞-category C), an algebra over an operad, or O-algebra for short, is, roughly, a left module over O with multiplications parametrized by O.

If O is a topological operad, then one can say an algebra over an operad is an O-monoid object in C. If C is symmetric monoidal, this recovers the usual definition.

Let C be symmetric monoidal ∞-category with monoidal structure distributive over colimits. If f : O O {\displaystyle f:O\to O'} is a map of operads and, moreover, if f is a homotopy equivalence, then the ∞-category of algebras over O in C is equivalent to the ∞-category of algebras over O' in C.

See also

Notes

  1. Francis, Proposition 2.9.

References

External links


Stub icon

This abstract algebra-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Operad algebra Add topic