Misplaced Pages

Orthopole

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In geometry, the orthopole of a system consisting of a triangle ABC and a line in the same plane is a point determined as follows. Let A ′, B ′, C ′ be the feet of perpendiculars dropped on from A, B, C respectively. Let A ′′, B ′′, C ′′ be the feet of perpendiculars dropped from A ′, B ′, C ′ to the sides opposite A, B, C (respectively) or to those sides' extensions. Then the three lines A ′ A ′′, B ′ B ′′, C ′ C ′′, are concurrent. The point at which they concur is the orthopole.

Due to their many properties, orthopoles have been the subject of a large literature. Some key topics are determination of the lines having a given orthopole and orthopolar circles.

Literature

References

  1. "MathWorld: Orthopole".
  2. Goormaghtigh, R. (1926). "The Orthopole". Tohoku Mathematical Journal. First Series. 27: 77–125.
  3. "The Orthopole". 21 January 2017.
  4. Ramler, O. J. (1930). "The Orthopole Loci of Some One-Parameter Systems of Lines Referred to a Fixed Triangle". The American Mathematical Monthly. 37 (3): 130–136. doi:10.2307/2299415. JSTOR 2299415.
  5. Karl, Mary Cordia (1932). "The Projective Theory of Orthopoles". The American Mathematical Monthly. 39 (6): 327–338. doi:10.2307/2300757. JSTOR 2300757.
  6. Goormaghtigh, R. (December 1946). "1936. The orthopole". The Mathematical Gazette. 30 (292): 293. doi:10.2307/3610737. JSTOR 3610737. S2CID 185932136.
Category:
Orthopole Add topic