Misplaced Pages

Cyclotomic character

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from P-adic cyclotomic character)

In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring R, its representation space is generally denoted by R(1) (that is, it is a representation χ : G → AutR(R(1)) ≈ GL(1, R)).

p-adic cyclotomic character

Fix p a prime, and let GQ denote the absolute Galois group of the rational numbers. The roots of unity μ p n = { ζ Q ¯ × ζ p n = 1 } {\displaystyle \mu _{p^{n}}=\left\{\zeta \in {\bar {\mathbf {Q} }}^{\times }\mid \zeta ^{p^{n}}=1\right\}} form a cyclic group of order p n {\displaystyle p^{n}} , generated by any choice of a primitive pth root of unity ζp.

Since all of the primitive roots in μ p n {\displaystyle \mu _{p^{n}}} are Galois conjugate, the Galois group G Q {\displaystyle G_{\mathbf {Q} }} acts on μ p n {\displaystyle \mu _{p^{n}}} by automorphisms. After fixing a primitive root of unity ζ p n {\displaystyle \zeta _{p^{n}}} generating μ p n {\displaystyle \mu _{p^{n}}} , any element of μ p n {\displaystyle \mu _{p^{n}}} can be written as a power of ζ p n {\displaystyle \zeta _{p^{n}}} , where the exponent is a unique element in ( Z / p n Z ) × {\displaystyle (\mathbf {Z} /p^{n}\mathbf {Z} )^{\times }} . One can thus write

σ . ζ := σ ( ζ ) = ζ p n a ( σ , n ) {\displaystyle \sigma .\zeta :=\sigma (\zeta )=\zeta _{p^{n}}^{a(\sigma ,n)}}

where a ( σ , n ) ( Z / p n Z ) × {\displaystyle a(\sigma ,n)\in (\mathbf {Z} /p^{n}\mathbf {Z} )^{\times }} is the unique element as above, depending on both σ {\displaystyle \sigma } and p {\displaystyle p} . This defines a group homomorphism called the mod p cyclotomic character:

χ p n : G Q ( Z / p n Z ) × σ a ( σ , n ) , {\displaystyle {\begin{aligned}{\chi _{p^{n}}}:G_{\mathbf {Q} }&\to (\mathbf {Z} /p^{n}\mathbf {Z} )^{\times }\\\sigma &\mapsto a(\sigma ,n),\end{aligned}}} which is viewed as a character since the action corresponds to a homomorphism G Q A u t ( μ p n ) ( Z / p n Z ) × G L 1 ( Z / p n Z ) {\displaystyle G_{\mathbf {Q} }\to \mathrm {Aut} (\mu _{p^{n}})\cong (\mathbf {Z} /p^{n}\mathbf {Z} )^{\times }\cong \mathrm {GL} _{1}(\mathbf {Z} /p^{n}\mathbf {Z} )} .

Fixing p {\displaystyle p} and σ {\displaystyle \sigma } and varying n {\displaystyle n} , the a ( σ , n ) {\displaystyle a(\sigma ,n)} form a compatible system in the sense that they give an element of the inverse limit lim n ( Z / p n Z ) × Z p × , {\displaystyle \varprojlim _{n}(\mathbf {Z} /p^{n}\mathbf {Z} )^{\times }\cong \mathbf {Z} _{p}^{\times },} the units in the ring of p-adic integers. Thus the χ p n {\displaystyle {\chi _{p^{n}}}} assemble to a group homomorphism called p-adic cyclotomic character:

χ p : G Q Z p × G L 1 ( Z p ) σ ( a ( σ , n ) ) n {\displaystyle {\begin{aligned}\chi _{p}:G_{\mathbf {Q} }&\to \mathbf {Z} _{p}^{\times }\cong \mathrm {GL_{1}} (\mathbf {Z} _{p})\\\sigma &\mapsto (a(\sigma ,n))_{n}\end{aligned}}} encoding the action of G Q {\displaystyle G_{\mathbf {Q} }} on all p-power roots of unity μ p n {\displaystyle \mu _{p^{n}}} simultaneously. In fact equipping G Q {\displaystyle G_{\mathbf {Q} }} with the Krull topology and Z p {\displaystyle \mathbf {Z} _{p}} with the p-adic topology makes this a continuous representation of a topological group.

As a compatible system of ℓ-adic representations

By varying ℓ over all prime numbers, a compatible system of ℓ-adic representations is obtained from the ℓ-adic cyclotomic characters (when considering compatible systems of representations, the standard terminology is to use the symbol ℓ to denote a prime instead of p). That is to say, χ = { χ } is a "family" of ℓ-adic representations

χ : G Q GL 1 ( Z ) {\displaystyle \chi _{\ell }:G_{\mathbf {Q} }\rightarrow \operatorname {GL} _{1}(\mathbf {Z} _{\ell })}

satisfying certain compatibilities between different primes. In fact, the χ form a strictly compatible system of ℓ-adic representations.

Geometric realizations

The p-adic cyclotomic character is the p-adic Tate module of the multiplicative group scheme Gm,Q over Q. As such, its representation space can be viewed as the inverse limit of the groups of pth roots of unity in Q.

In terms of cohomology, the p-adic cyclotomic character is the dual of the first p-adic étale cohomology group of Gm. It can also be found in the étale cohomology of a projective variety, namely the projective line: it is the dual of Hét(P ).

In terms of motives, the p-adic cyclotomic character is the p-adic realization of the Tate motive Z(1). As a Grothendieck motive, the Tate motive is the dual of H( P ).

Properties

The p-adic cyclotomic character satisfies several nice properties.

See also

References

  1. Section 3 of Deligne, Pierre (1979), "Valeurs de fonctions L et périodes d'intégrales" (PDF), in Borel, Armand; Casselman, William (eds.), Automorphic Forms, Representations, and L-Functions, Proceedings of the Symposium in Pure Mathematics (in French), vol. 33, Providence, RI: AMS, p. 325, ISBN 0-8218-1437-0, MR 0546622, Zbl 0449.10022
Category:
Cyclotomic character Add topic