Misplaced Pages

Polyakov formula

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (May 2024) (Learn how and when to remove this message)

In differential geometry and mathematical physics (especially string theory), the Polyakov formula expresses the conformal variation of the zeta functional determinant of a Riemannian manifold. Proposed by Alexander Markovich Polyakov this formula arose in the study of the quantum theory of strings. The corresponding density is local, and therefore is a Riemannian curvature invariant. In particular, whereas the functional determinant itself is prohibitively difficult to work with in general, its conformal variation can be written down explicitly.

References


Stub icon

This geometry-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Polyakov formula Add topic