Misplaced Pages

Porphyry (geology)

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Porphyric) Textural form of igneous rock with large grained crystals in a fine matrix This article is about the igneous rock. For other uses, see Porphyry. Not to be confused with Copper porphyry.
"Imperial Porphyry" from the Red Sea Mountains of Egypt
A waterworn cobble of porphyry
Rhyolite porphyry from Colorado; scale bar in lower left is 1 cm (0.39 in)

Porphyry (/ˈpɔːrfəri/ POR-fə-ree) is any of various granites or igneous rocks with coarse-grained crystals such as feldspar or quartz dispersed in a fine-grained silicate-rich, generally aphanitic matrix or groundmass. In its non-geologic, traditional use, the term porphyry usually refers to the purple-red form of this stone, valued for its appearance, but other colours of decorative porphyry are also used such as "green", "black" and "grey".

The term porphyry is from the Ancient Greek πορφύρα (porphyra), meaning "purple". Purple was the colour of royalty, and the Roman "imperial porphyry" was a deep purple igneous rock with large crystals of plagioclase. Some authors claimed the rock was the hardest known in antiquity. Thus porphyry was prized for monuments and building projects in Imperial Rome and thereafter.

Subsequently, the name was given to any igneous rocks with large crystals. The adjective porphyritic now refers to a certain texture of igneous rock regardless of its chemical and mineralogical composition or its color. Its chief characteristic is a large difference in size between the tiny matrix crystals and the much larger phenocrysts. Porphyries may be aphanites or phanerites, that is, the groundmass may have microscopic crystals as in basalt, or crystals easily distinguishable with the eye, as in granite.

Formation

Most igneous rocks have some degree of porphyritic texture. This is because most magma from which igneous rock solidifies is produced by partial melting of a mixture of different minerals. At first the mixed melt slowly cools deep in the crust. The magma begins crystallizing, the highest melting point minerals closest to the overall composition first, in a process called fractional crystallization. This forms phenocrysts, which usually have plenty of room for growth, and form large, well-shaped crystals with characteristic crystal faces (euhedral crystals). If they are different in density to the remaining melt, these phenocrysts usually settle out of solution, eventually creating cumulates; however if the partially crystallized magma is then erupted to the surface as a lava, the remainder of the melt is quickly cooled around the phenocrysts and crystallizes much more rapidly to form a very fine-grained or glassy matrix.

Porphyry can also form even from magma that completely solidifies while still underground. The groundmass will be visibly crystalline, though not as large as the phenocrysts. The crystallization of the phenocrysts during fractional crystallization changes the composition of the remaining liquid magma, moving it closer to the eutectic point, with a mixed composition of minerals. As the temperature continues to decrease, this point is reached, and the rock is entirely solidified. The simultaneous crystallization of the remaining minerals produces the finer-grained matrix surrounding the phenocrysts, as they crowd each other out.

The significance of porphyritic texture as an indication that magma forms through different stages of cooling was first recognized by the Canadian geologist, Norman L. Bowen, in 1928.

Porphyritic texture is particularly common in andesite, with the most prominent phenocrysts typically composed of plagioclase feldspar. Plagioclase has almost the same density as basaltic magma, so plagioclase phenocrysts are likely to remain suspended in the magma rather than settling out.

Rhomb porphyry

Rhomb porphyry is a volcanic rock with gray-white large porphyritic rhombus-shaped phenocrysts of feldspar (commonly anorthoclase) embedded in a very fine-grained red-brown matrix. The composition of rhomb porphyry places it in the trachytelatite classification of the QAPF diagram.

Rhomb porphyry is found in continental rift areas, including the East African Rift (including Mount Kilimanjaro), Mount Erebus near the Ross Sea in Antarctica, the Oslo graben in Norway, and south-central British Columbia.

Use in art and architecture

The Tetrarchs, a porphyry sculpture sacked from the Byzantine Philadelphion palace in 1204, Treasury of St. Marks, Venice
Carmagnola, an imperial porphyry head in Venice thought to represent Justinian

Antiquity and Byzantium

To the Romans it was known as Lapis porphyrites. Pliny the Elder's Natural History (36, 11) affirmed that the "Imperial Porphyry" had been discovered in Egypt during the reign of Tiberius; an inscription recently discovered and dated from AD 18 mentions the Roman Caius Cominius Leugas as the finder of this new quarry. Ancient Egyptians used other decorative porphyritic stones of a very close composition and appearance, but apparently remained unaware of the presence of the Roman grade although it was located in their own country. It was also sometimes used in Minoan art, and as early as 1850 BC on Crete in Minoan Knossos there were large column bases made of porphyry.

It was called "Imperial" as the mines, as elsewhere in the empire, were owned by the emperor. The red porphyry all came from the Gabal Abu Dukhan quarry (or Mons Porphyrites) in the Eastern Desert of Egypt, from 600 million-year-old andesite of the Arabian-Nubian Shield. The road from the quarry westward to Qena (Roman Maximianopolis) on the Nile, which Ptolemy put on his second-century map, was first described by Strabo, and it is to this day known as the Via Porphyrites, the Porphyry Road, its track marked by the hydreumata, or watering wells that made it viable in this utterly dry landscape. It was used for all the red porphyry columns in Rome, the togas on busts of emperors, the panels in the revetment of the Pantheon, the Column of Constantine in Istanbul as well as the altars and vases and fountain basins reused in the Renaissance and dispersed as far as Kyiv.

The Romans also used "Green Porphyry" (lapis Lacedaemonius, from Greece, also known today as Serpentine), and "Black Porphyry" from the same Egyptian quarry.

After the fifth century the quarry was lost to sight for many centuries. Byzantium scholar Alexander Vasiliev suggested this was the consequence of the Council of Chalcedon in 451 and the subsequent troubles in Egypt. The scientific members of the French Expedition under Napoleon sought it in vain, and it was only when the Eastern Desert was reopened for study under Muhammad Ali that the site was rediscovered by the English Egyptologists James Burton and John Gardner Wilkinson in 1823.

Porphyry was extensively used in Byzantine imperial monuments, for example in Hagia Sophia and in the "Porphyra", the official delivery room for use of pregnant Empresses in the Great Palace of Constantinople, giving rise to the phrase "born in the purple".

Choosing porphyry as a material was a bold and specific statement for late Imperial Rome. As if it were not enough that porphyry was explicitly for imperial use, the stone's rarity set the emperors apart from their subjects as their superiors. The comparative vividness of porphyry to other stones underscored that these figures were not regular citizens, but many levels above, even gods, and worthy of the respect they expected. Porphyry made the emperors unapproachable in terms of power and nature, belonging to another world, the world of the mighty gods, present for a short time on earth.

Porphyry also stood in for the physical purple robes Roman emperors wore to show status, because of its purple colouring. Similar to porphyry, purple fabric was extremely difficult to make, as what we now call Tyrian purple required the use of rare sea snails to make the dye. The colour itself reminded the public how to behave in the presence of the emperors, with respect bordering on worship for the self-proclaimed god-kings.

Roman and late Roman imperial sarcophagi

Porphyry sarcophagus, Istanbul Archaeological Museum

A uniquely prestigious use of porphyry was its choice as material for imperial sarcophagi in the 4th and early 5th centuries. That tradition appears to have been started with Diocletian's porphyry sarcophagus in his mausoleum, which was destroyed when the building was repurposed as a church but of which probable fragments are at the Archaeological Museum in Split, Croatia. The oldest and best-preserved ones are now conserved at the Vatican Museums and known as the Sarcophagi of Helena and Constantina.

Nine other imperial porphyry sarcophagi were long held in the Church of the Holy Apostles in Constantinople. They were described by Constantine VII Porphyrogenitus in the De Ceremoniis (mid-10th century), who specified them to be respectively of Constantine the Great, Constantius II, Julian, Jovian, Theodosius I, Arcadius, Aelia Eudoxia, Theodosius II, and Marcian. Of these, most still exist in complete or fragmentary form, despite depredations by later Byzantine Emperors, Crusaders, and Ottoman conquerors. Four presently adorn the facade of the main building of the İstanbul Archaeology Museums, including one whose rounded shape led Alexander Vasiliev to suggest attribution to Emperor Julian on the basis of Constantine Porphyrogenitus's description. Vasiliev conjectures that the nine imperial sarcophagi, including one which carries a crux ansata or Egyptian cross, were carved in Egypt before shipment to Constantinople.

Porphyry sarcophagi in post-Roman Western Europe

The imperial porphyry sarcophagi tradition was emulated by Ostrogothic King Theodoric the Great (454-526), whose mausoleum in Ravenna still contains a porphyry tub that was used as his sarcophagus. Similarly Charles the Bald, King of West Francia and Roman Emperor, was buried at Saint-Denis in a porphyry tub which may be the same one known as "Dagobert's tub" (cuve de Dagobert), now in the Louvre.

The tomb of Peter III of Aragon, in the Monastery of Santes Creus near Tarragona, reuses a porphyry tub or alveus, which has been conjectured to be originally the sarcophagus of Late Roman Emperor Constans in his mausoleum at Centcelles, a nearby site with a well-preserved 4th-century rotunda.

In twelfth- and thirteenth-century Sicily, another group of porphyry sarcophagi were produced from the reign of Roger II onward and used for Royal and then Imperial burials, namely those of King Roger II, King William I, Emperor Henry VI, Empress Constance, and Emperor Frederick II. They are all now in the Palermo Cathedral, except William's in Monreale Cathedral. Scholar Rosa Bacile argues that they were carved by a local workshop from porphyry imported from Rome, the latter four plausibly (based on observation of their fluting) all from a single column shaft that may have been taken from the Baths of Caracalla or the Baths of Diocletian. She notes that these Sicilian porphyry sarcophagi "are the very first examples of medieval free-standing secular tombs in the West, and therefore play a unique role within the history of Italian sepulchral art (earlier and later tombs are adjacent to, and dependent on walls)."

Six grand porphyry sarcophagi are featured along the walls of the octagonal Cappella dei Principi (Chapel of the Princes) that was built as one of two chapels in the architectural complex of the Basilica of San Lorenzo, in Florence, Italy, for the de' Medici family. Purple porphyry was used lavishly throughout the opulent chapel as well, with a revetment of marbles, inlaid with other colored marbles and semi-precious stone, that covers the walls completely. Envisioned by Cosimo I, Grand Duke of Tuscany (1537–1574), it was initiated by Ferdinand I de' Medici, following a design by Matteo Nigetti that won an informal competition held in 1602 by Don Giovanni de' Medici (a son of Cosimo I), which was altered somewhat during execution by Buontalenti.

The tomb of Napoleon at Les Invalides in Paris, designed by architect Louis Visconti, is centered on the deceased emperor's sarcophagus that often has been described as made of red porphyry although this is incorrect. Napoleon's sarcophagus is made of quartzite, however, its pedestal is made of green andesite porphyry from Vosges. The sarcophagus of Arthur Wellesley, 1st Duke of Wellington at St Paul's Cathedral was completed in 1858. and was made from a single piece of Cornish porphyry, of a type called luxullianite, which was found in a field near Lostwithiel.

Modern uses

In countries where many automobiles have studded winter tires such as Sweden, Finland, and Norway, it is common that highways are paved with asphalt made of porphyry aggregate to make the wearing course withstand the extreme wear from the spiked winter tires.

See also

References

  1. BRADLEY, M. (2006). COLOUR AND MARBLE IN EARLY IMPERIAL ROME. The Cambridge Classical Journal, 52, 1–22. http://www.jstor.org/stable/44698291
  2. Mari 2015: Z. Mari, “The Marbles from the Villa of Trajan at Arcinazzo Romano (Rome)” in P. Pensabene, E.Gasparini (edited by) Interdisciplinary Studies on Ancient Stone, ASMOSIA X, International Conference (Rome, 2012), Rome 2015
  3. "porphyry". Oxford Dictionary of Byzantium. New York & Oxford: Oxford University Press. 1991. p. 1701. ISBN 0195046528.
  4. Philpotts, Anthony R.; Ague, Jay J. (2009). Principles of igneous and metamorphic petrology (2nd ed.). Cambridge, UK: Cambridge University Press. p. 16. ISBN 9780521880060.
  5. Troll, Valentin R.; Chadwick, Jane P.; Ellam, Robert M.; McDonnell, Susan; Emeleus, C. Henry; Meighan, Ian G. (November 2005). "Sr and Nd isotope evidence for successive crustal contamination of Slieve Gullion ring-dyke magmas, Co. Armagh, Ireland". Geological Magazine. 142 (6): 659–68. Bibcode:2005GeoM..142..659T. doi:10.1017/S0016756805001068. ISSN 1469-5081. S2CID 129880738.
  6. Wilson, Majorie (1993). "Magmatic differentiation". Journal of the Geological Society. 150 (4). London: 611–624. Bibcode:1993JGSoc.150..611W. doi:10.1144/gsjgs.150.4.0611. S2CID 219542287.
  7. ^ Philpotts & Ague 2009, pp. 199–200.
  8. Bowen, N.L. (1928). The evolution of the igneous rocks. Princeton University Press. ASIN B01K2DN0N8.
  9. Blatt, Harvey; Tracy, Robert J. (1996). Petrology : igneous, sedimentary, and metamorphic (2nd ed.). New York: W.H. Freeman. p. 57. ISBN 0716724383.
  10. Philpotts & Ague 2009, p. 376.
  11. Philpotts & Ague 2009, p. 321.
  12. ^ Corfu, Fernando; Larsen, Bjørn Tore (December 2020). "U-Pb systematics in volcanic and plutonic rocks of the Krokskogen area: Resolving a 40 million years long evolution in the Oslo Rift". Lithos. 376–377: 105755. Bibcode:2020Litho.37605755C. doi:10.1016/j.lithos.2020.105755. hdl:10852/83877. S2CID 225300187.
  13. Nonnotte, Philippe; Guillou, Hervé; Le Gall, Bernard; Benoit, Mathieu; Cotten, Joseph; Scaillet, Stéphane (June 2008). "New K–Ar age determinations of Kilimanjaro volcano in the North Tanzanian diverging rift, East Africa" (PDF). Journal of Volcanology and Geothermal Research. 173 (1–2): 99–112. Bibcode:2008JVGR..173...99N. doi:10.1016/j.jvolgeores.2007.12.042. S2CID 18476938.
  14. McIver, JR; Gevers, T.W. (1970). "Volcanic vents below the Royal Society Range, Central Victoria Land, Antarctica". South African Journal of Geology. 73 (2): 65–88.
  15. Ross, John V. (1 August 1974). "A Tertiary Thermal Event in South-Central British Columbia". Canadian Journal of Earth Sciences. 11 (8): 1116–1122. Bibcode:1974CaJES..11.1116R. doi:10.1139/e74-106.
  16. Hirt, Alfred Michael (25 March 2010). Imperial Mines and Quarries in the Roman World: Organizational Aspects 27 BC-AD 235. OUP Oxford. ISBN 978-0-19-957287-8.
  17. Bagnall, Roger S.; Harrell, James A. (2003). "Knekites". Chronique d'Egypte. 78 (155–156): 229–235. doi:10.1484/J.CDE.2.309221.
  18. W. Van Rengen¸"A New Paneion at Mons Porphyrites”, Chronique d'Egypte, vol. 70, issue 139-140, p. 240-245.
  19. C. Michael Hogan (2007). "Knossos fieldnotes". The Modern Antiquarian. Retrieved 2012-10-14.
  20. A. M. Hirt, IMPERIAL MINES AND QUARRIES IN THE ROMAN WORLD. ORGANIZATIONAL ASPECTS 27 bc–ad 225. Oxford: Oxford University Press, 2010. isbn 9780199572878 p 368
  21. "Archaeology". Arch.soton.ac.uk. 2012-09-25. Archived from the original on 2008-03-21. Retrieved 2012-10-14.
  22. "Via Porphyrites". Saudi Aramco World. Retrieved 2012-10-14.
  23. The Cambridge companion to the Age of Constantine, Volume 13 By Noel Emmanuel Lenski, p. 9, at Google Books
  24. Pliny Nat. Hist., 36,55
  25. Pensabene P., I marmi nella Roma antica, Rome 2013, pp. 59-62.
  26. Paul T. Nicholson, Ian Shaw, Ancient Egyptian Materials and Technology, Cambridge University Press 2000 p 49
  27. ^ A. A. Vasiliev (1848). "Imperial Porphyry Sarcophagi in Constantinople". Dumbarton Oaks Papers. 4: 1+3–26. doi:10.2307/1291047. JSTOR 1291047.
  28. Emerson Howland Swift. Hagia Sophia. Retrieved 2012-10-14.
  29. A. G. Paspatēs (2004-04-30). The Great Palace Of Constantinople. Retrieved 2012-10-14.
  30. Nees, Lawrence (2002). Early Medieval Art-Oxford history of art. Oxford University Press. p. 22. ISBN 9780192842435.
  31. Schultz, Colin. "In Ancient Rome, Purple Dye Was Made from Snails." Smithsonian magazine. Smithsonian Institution, 10 Oct. 2013. Web. 30 November 2017. http://www.smithsonianmag.com/smart-news/in-ancient-rome-purple-dye-was-made-from-snails-1239931/?no-ist
  32. Haynes, D. E. L. “A Late Antique Portrait Head in Porphyry.” The Burlington Magazine, vol. 118, no. 879, 1976, pp. 357. JSTOR, JSTOR, www.jstor.org/stable/878411. Retrieved 30 November 2017.
  33. Zrinka Buljević (2019). "Diocletian's Porphyry Sarcophagus (?)". Prilozi Povijesti Umjetnosti U Dalmaciji. 44 (1): 429–441.
  34. Roger Pearse (18 December 2013). "More on the tombs of the emperors at the Church of the Holy Apostles in Constantinople". Roger Pearse.
  35. Geneviève Bührer-Thierry; Charles Mériaux (2010). La France avant la France, (481–888). Paris: Belin. p. 412.
  36. "Cuve dite "de Dagobert "". Musée du Louvre.
  37. Mark J. Johnson (2008). "The Porphyry Alveus of Santes Creus and the Mausoleum at Centcelles". Deutsches Archäologisches Institut, Abteilung Madrid. Madrider Mitteilungen (Sonderdruck 49). Wiesbaden: Reichert Verlag.
  38. Rosa Bacile (2017), Romanesque and the Mediterranean: Patterns of Exchange Across the Latin, Greek and Islamic Worlds c.1000-c.1250, Routledge
  39. Touring Club Italiano, Firenze e dintorni (Milan, 1964), p. 285f.
  40. Jacques Touret; Andrey Bulakh (2016), "The Russian contribution to the edification of the Napoleon tombstone in Paris" (PDF), Vestnik of Saint Petersburg University, Series 15 (3): 70–83, doi:10.21638/11701/spbu15.2016.306
  41. Pearsall, Cornelia D. J. (1999). "Burying the Duke: Victorian Mourning and the Funeral of the Duke of Wellington". Victorian Literature and Culture. 27 (2): 384. doi:10.1017/S1060150399272026. JSTOR 25058460. S2CID 162303822. Retrieved 1 January 2023.
  42. Lobley, J. Logan (1892). "Building stones, their structure and origin". Stone: An Illustrated Magazine. V (June–November): 46. Retrieved 1 January 2023.
  43. Lundqvist, Thomas (2009). Porfyr i Sverige: En geologisk översikt (in Swedish). Sveriges geologiska undersökning. pp. 42–43. ISBN 978-91-7158-960-6.

External links

Types of rocks
Igneous rock
Sedimentary rock
Metamorphic rock
Specific varieties
Categories:
Porphyry (geology) Add topic