Misplaced Pages

Prescribed scalar curvature problem

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In Riemannian geometry, a branch of mathematics, the prescribed scalar curvature problem is as follows: given a closed, smooth manifold M and a smooth, real-valued function ƒ on M, construct a Riemannian metric on M whose scalar curvature equals ƒ. Due primarily to the work of J. Kazdan and F. Warner in the 1970s, this problem is well understood.

The solution in higher dimensions

If the dimension of M is three or greater, then any smooth function ƒ which takes on a negative value somewhere is the scalar curvature of some Riemannian metric. The assumption that ƒ be negative somewhere is needed in general, since not all manifolds admit metrics which have strictly positive scalar curvature. (For example, the three-dimensional torus is such a manifold.) However, Kazdan and Warner proved that if M does admit some metric with strictly positive scalar curvature, then any smooth function ƒ is the scalar curvature of some Riemannian metric.

See also

References

  • Aubin, Thierry. Some nonlinear problems in Riemannian geometry. Springer Monographs in Mathematics, 1998.
  • Kazdan, J., and Warner F. Scalar curvature and conformal deformation of Riemannian structure. Journal of Differential Geometry. 10 (1975). 113–134.


Stub icon

This Riemannian geometry-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Prescribed scalar curvature problem Add topic