Misplaced Pages

q-Bessel polynomials

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In mathematics, the q-Bessel polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Definition

The polynomials are given in terms of basic hypergeometric functions by :

y n ( x ; a ; q ) = 2 ϕ 1 ( q n a q n 0 ; q , q x ) . {\displaystyle y_{n}(x;a;q)=\;{}_{2}\phi _{1}\left({\begin{matrix}q^{-n}&-aq^{n}\\0\end{matrix}};q,qx\right).}


Also known as alternative q-Charlier polynomials K ( x ; a ; q ) . {\displaystyle K(x;a;q).}

Orthogonality

k = 0 ( a k ( q ; q ) n q ( k + 1 2 ) y m ( q k ; a ; q ) y n ( q k ; a ; q ) ) = ( q ; q ) n ( a q n ; q ) a n q ( n + 1 2 ) 1 + a q 2 n δ m n {\displaystyle \sum _{k=0}^{\infty }\left({\frac {a^{k}}{(q;q)_{n}}}*q^{k+1 \choose 2}*y_{m}*(q^{k};a;q)*y_{n}*(q^{k};a;q)\right)=(q;q)_{n}*(-aq^{n};q)_{\infty }{\frac {a^{n}*q^{n+1 \choose 2}}{1+aq^{2n}}}\delta _{mn}}

where ( q ; q ) n  and  ( a q n ; q ) {\displaystyle (q;q)_{n}{\text{ and }}(-aq^{n};q)_{\infty }} are q-Pochhammer symbols.

Gallery

QBessel function abs complex 3D Maple plot
QBessel function Im complex 3D Maple plot
QBessel function Re complex 3D Maple plot
QBessel function abs density Maple plot
QBessel function Im density Maple plot
QBessel function Re density Maple plot

References

  1. Roelof Koekoek, Peter Lesky Rene Swarttouw, Hypergeometric Orthogonal Polynomials and their q-Analogues, p526 Springer 2010
  2. Roelof p527
Categories:
q-Bessel polynomials Add topic