Misplaced Pages

Quantum Cramér–Rao bound

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The quantum Cramér–Rao bound is the quantum analogue of the classical Cramér–Rao bound. It bounds the achievable precision in parameter estimation with a quantum system:

( Δ θ ) 2 1 m F Q [ ϱ , H ] , {\displaystyle (\Delta \theta )^{2}\geq {\frac {1}{mF_{\rm {Q}}}},}

where m {\displaystyle m} is the number of independent repetitions, and F Q [ ϱ , H ] {\displaystyle F_{\rm {Q}}} is the quantum Fisher information.

Here, ϱ {\displaystyle \varrho } is the state of the system and H {\displaystyle H} is the Hamiltonian of the system. When considering a unitary dynamics of the type

ϱ ( θ ) = exp ( i H θ ) ϱ 0 exp ( + i H θ ) , {\displaystyle \varrho (\theta )=\exp(-iH\theta )\varrho _{0}\exp(+iH\theta ),}

where ϱ 0 {\displaystyle \varrho _{0}} is the initial state of the system, θ {\displaystyle \theta } is the parameter to be estimated based on measurements on ϱ ( θ ) . {\displaystyle \varrho (\theta ).}

Simple derivation from the Heisenberg uncertainty relation

Let us consider the decomposition of the density matrix to pure components as

ϱ = k p k | Ψ k Ψ k | . {\displaystyle \varrho =\sum _{k}p_{k}\vert \Psi _{k}\rangle \langle \Psi _{k}\vert .}

The Heisenberg uncertainty relation is valid for all | Ψ k {\displaystyle \vert \Psi _{k}\rangle }

( Δ A ) Ψ k 2 ( Δ B ) Ψ k 2 1 4 | i [ A , B ] Ψ k | 2 . {\displaystyle (\Delta A)_{\Psi _{k}}^{2}(\Delta B)_{\Psi _{k}}^{2}\geq {\frac {1}{4}}|\langle i\rangle _{\Psi _{k}}|^{2}.}

From these, employing the Cauchy-Schwarz inequality we arrive at

( Δ θ ) A 2 1 4 min { p k , Ψ k } [ k p k ( Δ B ) Ψ k 2 ] . {\displaystyle (\Delta \theta )_{A}^{2}\geq {\frac {1}{4\min _{\{p_{k},\Psi _{k}\}}}}.}

Here

( Δ θ ) A 2 = ( Δ A ) 2 | θ A | 2 = ( Δ A ) 2 | i [ A , B ] | 2 {\displaystyle (\Delta \theta )_{A}^{2}={\frac {(\Delta A)^{2}}{|\partial _{\theta }\langle A\rangle |^{2}}}={\frac {(\Delta A)^{2}}{|\langle i\rangle |^{2}}}}

is the error propagation formula, which roughly tells us how well θ {\displaystyle \theta } can be estimated by measuring A . {\displaystyle A.} Moreover, the convex roof of the variance is given as

min { p k , Ψ k } [ k p k ( Δ B ) Ψ k 2 ] = 1 4 F Q [ ϱ , B ] , {\displaystyle \min _{\{p_{k},\Psi _{k}\}}\left={\frac {1}{4}}F_{Q},}

where F Q [ ϱ , B ] {\displaystyle F_{Q}} is the quantum Fisher information.

References

  1. Braunstein, Samuel L.; Caves, Carlton M. (1994-05-30). "Statistical distance and the geometry of quantum states". Physical Review Letters. 72 (22). American Physical Society (APS): 3439–3443. Bibcode:1994PhRvL..72.3439B. doi:10.1103/physrevlett.72.3439. ISSN 0031-9007. PMID 10056200.
  2. Braunstein, Samuel L.; Caves, Carlton M.; Milburn, G.J. (April 1996). "Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance". Annals of Physics. 247 (1): 135–173. arXiv:quant-ph/9507004. Bibcode:1996AnPhy.247..135B. doi:10.1006/aphy.1996.0040. S2CID 358923.
  3. Tóth, Géza; Fröwis, Florian (31 January 2022). "Uncertainty relations with the variance and the quantum Fisher information based on convex decompositions of density matrices". Physical Review Research. 4 (1): 013075. arXiv:2109.06893. Bibcode:2022PhRvR...4a3075T. doi:10.1103/PhysRevResearch.4.013075. S2CID 237513549.
  4. Pezzè, Luca; Smerzi, Augusto; Oberthaler, Markus K.; Schmied, Roman; Treutlein, Philipp (5 September 2018). "Quantum metrology with nonclassical states of atomic ensembles". Reviews of Modern Physics. 90 (3): 035005. arXiv:1609.01609. Bibcode:2018RvMP...90c5005P. doi:10.1103/RevModPhys.90.035005. S2CID 119250709.
  5. Tóth, Géza; Petz, Dénes (20 March 2013). "Extremal properties of the variance and the quantum Fisher information". Physical Review A. 87 (3): 032324. arXiv:1109.2831. Bibcode:2013PhRvA..87c2324T. doi:10.1103/PhysRevA.87.032324. S2CID 55088553.
  6. Yu, Sixia (2013). "Quantum Fisher Information as the Convex Roof of Variance". arXiv:1302.5311 .
Categories:
Quantum Cramér–Rao bound Add topic