Misplaced Pages

Reissner–Nordström metric

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Reissner–Nordström black hole) Spherically symmetric metric with electric charge
This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (January 2013) (Learn how and when to remove this message)
General relativity
Spacetime curvature schematic G μ ν + Λ g μ ν = κ T μ ν {\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }}
Fundamental concepts
Phenomena
Spacetime
  • Equations
  • Formalisms
Equations
Formalisms
Advanced theory
Solutions
Scientists

In physics and astronomy, the Reissner–Nordström metric is a static solution to the Einstein–Maxwell field equations, which corresponds to the gravitational field of a charged, non-rotating, spherically symmetric body of mass M. The analogous solution for a charged, rotating body is given by the Kerr–Newman metric.

The metric was discovered between 1916 and 1921 by Hans Reissner, Hermann Weyl, Gunnar Nordström and George Barker Jeffery independently.

Metric

In spherical coordinates ( t , r , θ , φ ) {\displaystyle (t,r,\theta ,\varphi )} ⁠, the Reissner–Nordström metric (i.e. the line element) is

d s 2 {\displaystyle ds^{2}} = c 2 d τ 2 {\displaystyle =c^{2}\,d\tau ^{2}} = ( 1 r s r + r Q 2 r 2 ) c 2 d t 2 {\displaystyle =\left(1-{\frac {r_{\text{s}}}{r}}+{\frac {r_{\rm {Q}}^{2}}{r^{2}}}\right)c^{2}\,dt^{2}} ( 1 r s r + r Q 2 r 2 ) 1 d r 2 {\displaystyle -\left(1-{\frac {r_{\text{s}}}{r}}+{\frac {r_{Q}^{2}}{r^{2}}}\right)^{-1}\,dr^{2}}   r 2 d θ 2 {\displaystyle -~r^{2}\,d\theta ^{2}}   r 2 sin 2 θ d φ 2 , {\displaystyle -~r^{2}\sin ^{2}\theta \,d\varphi ^{2},}

where

  • c {\displaystyle c} is the speed of light
  • τ {\displaystyle \tau } is the proper time
  • t {\displaystyle t} is the time coordinate (measured by a stationary clock at infinity).
  • r {\displaystyle r} is the radial coordinate
  • ( θ , φ ) {\displaystyle (\theta ,\varphi )} are the spherical angles
  • r s {\displaystyle r_{\text{s}}} is the Schwarzschild radius of the body given by r s = 2 G M c 2 {\displaystyle \textstyle r_{\text{s}}={\frac {2GM}{c^{2}}}}
  • r Q {\displaystyle r_{Q}} is a characteristic length scale given by r Q 2 = Q 2 G 4 π ε 0 c 4 {\displaystyle \textstyle r_{Q}^{2}={\frac {Q^{2}G}{4\pi \varepsilon _{0}c^{4}}}}
  • ε 0 {\displaystyle \varepsilon _{0}} is the electric constant.

The total mass of the central body and its irreducible mass are related by

M i r r = c 2 G r + 2 2     M = Q 2 16 π ε 0 G M i r r + M i r r . {\displaystyle M_{\rm {irr}}={\frac {c^{2}}{G}}{\sqrt {\frac {r_{+}^{2}}{2}}}\ \to \ M={\frac {Q^{2}}{16\pi \varepsilon _{0}GM_{\rm {irr}}}}+M_{\rm {irr}}.}

The difference between M {\displaystyle M} and M i r r {\displaystyle M_{\rm {irr}}} is due to the equivalence of mass and energy, which makes the electric field energy also contribute to the total mass.

In the limit that the charge Q {\displaystyle Q} (or equivalently, the length scale ⁠ r Q {\displaystyle r_{Q}} ⁠) goes to zero, one recovers the Schwarzschild metric. The classical Newtonian theory of gravity may then be recovered in the limit as the ratio r s / r {\displaystyle r_{\text{s}}/r} goes to zero. In the limit that both r Q / r {\displaystyle r_{Q}/r} and r s / r {\displaystyle r_{\text{s}}/r} go to zero, the metric becomes the Minkowski metric for special relativity.

In practice, the ratio r s / r {\displaystyle r_{\text{s}}/r} is often extremely small. For example, the Schwarzschild radius of the Earth is roughly 9 mm (3/8 inch), whereas a satellite in a geosynchronous orbit has an orbital radius r {\displaystyle r} that is roughly four billion times larger, at 42164 km (26200 miles). Even at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The ratio only becomes large close to black holes and other ultra-dense objects such as neutron stars.

Charged black holes

Although charged black holes with rQ ≪ rs are similar to the Schwarzschild black hole, they have two horizons: the event horizon and an internal Cauchy horizon. As with the Schwarzschild metric, the event horizons for the spacetime are located where the metric component g r r {\displaystyle g_{rr}} diverges; that is, where 1 r s r + r Q 2 r 2 = 1 g r r = 0. {\displaystyle 1-{\frac {r_{\rm {s}}}{r}}+{\frac {r_{\rm {Q}}^{2}}{r^{2}}}=-{\frac {1}{g_{rr}}}=0.}

This equation has two solutions: r ± = 1 2 ( r s ± r s 2 4 r Q 2 ) . {\displaystyle r_{\pm }={\frac {1}{2}}\left(r_{\rm {s}}\pm {\sqrt {r_{\rm {s}}^{2}-4r_{\rm {Q}}^{2}}}\right).}

These concentric event horizons become degenerate for 2rQ = rs, which corresponds to an extremal black hole. Black holes with 2rQ > rs cannot exist in nature because if the charge is greater than the mass there can be no physical event horizon (the term under the square root becomes negative). Objects with a charge greater than their mass can exist in nature, but they can not collapse down to a black hole, and if they could, they would display a naked singularity. Theories with supersymmetry usually guarantee that such "superextremal" black holes cannot exist.

The electromagnetic potential is A α = ( Q / r , 0 , 0 , 0 ) . {\displaystyle A_{\alpha }=(Q/r,0,0,0).}

If magnetic monopoles are included in the theory, then a generalization to include magnetic charge P is obtained by replacing Q by Q + P in the metric and including the term P cos θ  in the electromagnetic potential.

Gravitational time dilation

The gravitational time dilation in the vicinity of the central body is given by γ = | g t t | = r 2 Q 2 + ( r 2 M ) r , {\displaystyle \gamma ={\sqrt {|g^{tt}|}}={\sqrt {\frac {r^{2}}{Q^{2}+(r-2M)r}}},} which relates to the local radial escape velocity of a neutral particle v e s c = γ 2 1 γ . {\displaystyle v_{\rm {esc}}={\frac {\sqrt {\gamma ^{2}-1}}{\gamma }}.}

Christoffel symbols

The Christoffel symbols Γ i j k = s = 0 3   g i s 2 ( g j s x k + g s k x j g j k x s ) {\displaystyle \Gamma ^{i}{}_{jk}=\sum _{s=0}^{3}\ {\frac {g^{is}}{2}}\left({\frac {\partial g_{js}}{\partial x^{k}}}+{\frac {\partial g_{sk}}{\partial x^{j}}}-{\frac {\partial g_{jk}}{\partial x^{s}}}\right)} with the indices { 0 ,   1 ,   2 ,   3 } { t ,   r ,   θ ,   φ } {\displaystyle \{0,\ 1,\ 2,\ 3\}\to \{t,\ r,\ \theta ,\ \varphi \}} give the nonvanishing expressions Γ t t r = M r Q 2 r ( Q 2 + r 2 2 M r ) Γ r t t = ( M r Q 2 ) ( r 2 2 M r + Q 2 ) r 5 Γ r r r = Q 2 M r r ( Q 2 2 M r + r 2 ) Γ r θ θ = r 2 2 M r + Q 2 r Γ r φ φ = sin 2 θ ( r 2 2 M r + Q 2 ) r Γ θ θ r = 1 r Γ θ φ φ = sin θ cos θ Γ φ φ r = 1 r Γ φ φ θ = cot θ {\displaystyle {\begin{aligned}\Gamma ^{t}{}_{tr}&={\frac {Mr-Q^{2}}{r(Q^{2}+r^{2}-2Mr)}}\\\Gamma ^{r}{}_{tt}&={\frac {(Mr-Q^{2})\left(r^{2}-2Mr+Q^{2}\right)}{r^{5}}}\\\Gamma ^{r}{}_{rr}&={\frac {Q^{2}-Mr}{r(Q^{2}-2Mr+r^{2})}}\\\Gamma ^{r}{}_{\theta \theta }&=-{\frac {r^{2}-2Mr+Q^{2}}{r}}\\\Gamma ^{r}{}_{\varphi \varphi }&=-{\frac {\sin ^{2}\theta \left(r^{2}-2Mr+Q^{2}\right)}{r}}\\\Gamma ^{\theta }{}_{\theta r}&={\frac {1}{r}}\\\Gamma ^{\theta }{}_{\varphi \varphi }&=-\sin \theta \cos \theta \\\Gamma ^{\varphi }{}_{\varphi r}&={\frac {1}{r}}\\\Gamma ^{\varphi }{}_{\varphi \theta }&=\cot \theta \end{aligned}}}

Given the Christoffel symbols, one can compute the geodesics of a test-particle.

Tetrad form

Instead of working in the holonomic basis, one can perform efficient calculations with a tetrad. Let e I = e μ I {\displaystyle {\bf {e}}_{I}=e_{\mu I}} be a set of one-forms with internal Minkowski index I { 0 , 1 , 2 , 3 } {\displaystyle I\in \{0,1,2,3\}} ⁠, such that ⁠ η I J e μ I e ν J = g μ ν {\displaystyle \eta ^{IJ}e_{\mu I}e_{\nu J}=g_{\mu \nu }} ⁠. The Reissner metric can be described by the tetrad

e 0 = G 1 / 2 d t {\displaystyle {\bf {e}}_{0}=G^{1/2}\,dt}
e 1 = G 1 / 2 d r {\displaystyle {\bf {e}}_{1}=G^{-1/2}\,dr}
e 2 = r d θ {\displaystyle {\bf {e}}_{2}=r\,d\theta }
e 3 = r sin θ d φ {\displaystyle {\bf {e}}_{3}=r\sin \theta \,d\varphi }

where ⁠ G ( r ) = 1 r s r 1 + r Q 2 r 2 {\displaystyle G(r)=1-r_{s}r^{-1}+r_{Q}^{2}r^{-2}} ⁠. The parallel transport of the tetrad is captured by the connection one-forms ω I J = ω J I = ω μ I J = e I ν μ e J ν {\displaystyle {\boldsymbol {\omega }}_{IJ}=-{\boldsymbol {\omega }}_{JI}=\omega _{\mu IJ}=e_{I}^{\nu }\nabla _{\mu }e_{J\nu }} ⁠. These have only 24 independent components compared to the 40 components of ⁠ Γ λ μ ν {\displaystyle \Gamma ^{\lambda }{}_{\mu \nu }} ⁠. The connections can be solved for by inspection from Cartan's equation ⁠ d e I = e J ω I J {\displaystyle d{\bf {e}}_{I}={\bf {e}}^{J}\wedge {\boldsymbol {\omega }}_{IJ}} ⁠, where the left hand side is the exterior derivative of the tetrad, and the right hand side is a wedge product.

ω 10 = 1 2 r G d t {\displaystyle {\boldsymbol {\omega }}_{10}={\frac {1}{2}}\partial _{r}G\,dt}
ω 20 = ω 30 = 0 {\displaystyle {\boldsymbol {\omega }}_{20}={\boldsymbol {\omega }}_{30}=0}
ω 21 = G 1 / 2 d θ {\displaystyle {\boldsymbol {\omega }}_{21}=-G^{1/2}\,d\theta }
ω 31 = sin θ G 1 / 2 d φ {\displaystyle {\boldsymbol {\omega }}_{31}=-\sin \theta G^{1/2}d\varphi }
ω 32 = cos θ d φ {\displaystyle {\boldsymbol {\omega }}_{32}=-\cos \theta \,d\varphi }

The Riemann tensor R I J = R μ ν I J {\displaystyle {\bf {R}}_{IJ}=R_{\mu \nu IJ}} can be constructed as a collection of two-forms by the second Cartan equation R I J = d ω I J + ω I K ω K J , {\displaystyle {\bf {R}}_{IJ}=d{\boldsymbol {\omega }}_{IJ}+{\boldsymbol {\omega }}_{IK}\wedge {\boldsymbol {\omega }}^{K}{}_{J},} which again makes use of the exterior derivative and wedge product. This approach is significantly faster than the traditional computation with ⁠ Γ λ μ ν {\displaystyle \Gamma ^{\lambda }{}_{\mu \nu }} ⁠; note that there are only four nonzero ω I J {\displaystyle {\boldsymbol {\omega }}_{IJ}} compared with nine nonzero components of ⁠ Γ λ μ ν {\displaystyle \Gamma ^{\lambda }{}_{\mu \nu }} ⁠.

Equations of motion

Because of the spherical symmetry of the metric, the coordinate system can always be aligned in a way that the motion of a test-particle is confined to a plane, so for brevity and without restriction of generality we use θ instead of φ. In dimensionless natural units of G = M = c = K = 1 the motion of an electrically charged particle with the charge q is given by x ¨ i = j = 0 3   k = 0 3   Γ j k i   x ˙ j   x ˙ k + q   F i k   x ˙ k {\displaystyle {\ddot {x}}^{i}=-\sum _{j=0}^{3}\ \sum _{k=0}^{3}\ \Gamma _{jk}^{i}\ {{\dot {x}}^{j}}\ {{\dot {x}}^{k}}+q\ {F^{ik}}\ {{\dot {x}}_{k}}} which yields t ¨ =   2 ( Q 2 M r ) r ( r 2 2 M r + Q 2 ) r ˙ t ˙ + q Q ( r 2 2 m r + Q 2 )   r ˙ {\displaystyle {\ddot {t}}={\frac {\ 2(Q^{2}-Mr)}{r(r^{2}-2Mr+Q^{2})}}{\dot {r}}{\dot {t}}+{\frac {qQ}{(r^{2}-2mr+Q^{2})}}\ {\dot {r}}} r ¨ = ( r 2 2 M r + Q 2 ) ( Q 2 M r )   t ˙ 2 r 5 + ( M r Q 2 ) r ˙ 2 r ( r 2 2 M r + Q 2 ) + ( r 2 2 M r + Q 2 )   θ ˙ 2 r + q Q ( r 2 2 m r + Q 2 ) r 4   t ˙ {\displaystyle {\ddot {r}}={\frac {(r^{2}-2Mr+Q^{2})(Q^{2}-Mr)\ {\dot {t}}^{2}}{r^{5}}}+{\frac {(Mr-Q^{2}){\dot {r}}^{2}}{r(r^{2}-2Mr+Q^{2})}}+{\frac {(r^{2}-2Mr+Q^{2})\ {\dot {\theta }}^{2}}{r}}+{\frac {qQ(r^{2}-2mr+Q^{2})}{r^{4}}}\ {\dot {t}}} θ ¨ = 2   θ ˙   r ˙ r . {\displaystyle {\ddot {\theta }}=-{\frac {2\ {\dot {\theta }}\ {\dot {r}}}{r}}.}

All total derivatives are with respect to proper time ⁠ a ˙ = d a d τ {\displaystyle {\dot {a}}={\frac {da}{d\tau }}} ⁠.

Constants of the motion are provided by solutions S ( t , t ˙ , r , r ˙ , θ , θ ˙ , φ , φ ˙ ) {\displaystyle S(t,{\dot {t}},r,{\dot {r}},\theta ,{\dot {\theta }},\varphi ,{\dot {\varphi }})} to the partial differential equation 0 = t ˙ S t + r ˙ S r + θ ˙ S θ + t ¨ S t ˙ + r ¨ S r ˙ + θ ¨ S θ ˙ {\displaystyle 0={\dot {t}}{\dfrac {\partial S}{\partial t}}+{\dot {r}}{\frac {\partial S}{\partial r}}+{\dot {\theta }}{\frac {\partial S}{\partial \theta }}+{\ddot {t}}{\frac {\partial S}{\partial {\dot {t}}}}+{\ddot {r}}{\frac {\partial S}{\partial {\dot {r}}}}+{\ddot {\theta }}{\frac {\partial S}{\partial {\dot {\theta }}}}} after substitution of the second derivatives given above. The metric itself is a solution when written as a differential equation S 1 = 1 = ( 1 r s r + r Q 2 r 2 ) c 2 t ˙ 2 ( 1 r s r + r Q 2 r 2 ) 1 r ˙ 2 r 2 θ ˙ 2 . {\displaystyle S_{1}=1=\left(1-{\frac {r_{s}}{r}}+{\frac {r_{\rm {Q}}^{2}}{r^{2}}}\right)c^{2}\,{\dot {t}}^{2}-\left(1-{\frac {r_{s}}{r}}+{\frac {r_{Q}^{2}}{r^{2}}}\right)^{-1}\,{\dot {r}}^{2}-r^{2}\,{\dot {\theta }}^{2}.}

The separable equation S r 2 r θ ˙ S θ ˙ = 0 {\displaystyle {\frac {\partial S}{\partial r}}-{\frac {2}{r}}{\dot {\theta }}{\frac {\partial S}{\partial {\dot {\theta }}}}=0} immediately yields the constant relativistic specific angular momentum S 2 = L = r 2 θ ˙ ; {\displaystyle S_{2}=L=r^{2}{\dot {\theta }};} a third constant obtained from S r 2 ( M r Q 2 ) r ( r 2 2 M r + Q 2 ) t ˙ S t ˙ = 0 {\displaystyle {\frac {\partial S}{\partial r}}-{\frac {2(Mr-Q^{2})}{r(r^{2}-2Mr+Q^{2})}}{\dot {t}}{\frac {\partial S}{\partial {\dot {t}}}}=0} is the specific energy (energy per unit rest mass) S 3 = E = t ˙ ( r 2 2 M r + Q 2 ) r 2 + q Q r . {\displaystyle S_{3}=E={\frac {{\dot {t}}(r^{2}-2Mr+Q^{2})}{r^{2}}}+{\frac {qQ}{r}}.}

Substituting S 2 {\displaystyle S_{2}} and S 3 {\displaystyle S_{3}} into S 1 {\displaystyle S_{1}} yields the radial equation c d τ = r 2 d r r 4 ( E 1 ) + 2 M r 3 ( Q 2 + L 2 ) r 2 + 2 M L 2 r Q 2 L 2 . {\displaystyle c\int d\tau =\int {\frac {r^{2}\,dr}{\sqrt {r^{4}(E-1)+2Mr^{3}-(Q^{2}+L^{2})r^{2}+2ML^{2}r-Q^{2}L^{2}}}}.}

Multiplying under the integral sign by S 2 {\displaystyle S_{2}} yields the orbital equation c L r 2 d θ = L d r r 4 ( E 1 ) + 2 M r 3 ( Q 2 + L 2 ) r 2 + 2 M L 2 r Q 2 L 2 . {\displaystyle c\int Lr^{2}\,d\theta =\int {\frac {L\,dr}{\sqrt {r^{4}(E-1)+2Mr^{3}-(Q^{2}+L^{2})r^{2}+2ML^{2}r-Q^{2}L^{2}}}}.}

The total time dilation between the test-particle and an observer at infinity is γ = q   Q   r 3 + E   r 4 r 2   ( r 2 2 r + Q 2 ) . {\displaystyle \gamma ={\frac {q\ Q\ r^{3}+E\ r^{4}}{r^{2}\ (r^{2}-2r+Q^{2})}}.}

The first derivatives x ˙ i {\displaystyle {\dot {x}}^{i}} and the contravariant components of the local 3-velocity v i {\displaystyle v^{i}} are related by x ˙ i = v i ( 1 v 2 )   | g i i | , {\displaystyle {\dot {x}}^{i}={\frac {v^{i}}{\sqrt {(1-v^{2})\ |g_{ii}|}}},} which gives the initial conditions r ˙ = v r 2 2 M + Q 2 r ( 1 v 2 ) {\displaystyle {\dot {r}}={\frac {v_{\parallel }{\sqrt {r^{2}-2M+Q^{2}}}}{r{\sqrt {(1-v^{2})}}}}} θ ˙ = v r ( 1 v 2 ) . {\displaystyle {\dot {\theta }}={\frac {v_{\perp }}{r{\sqrt {(1-v^{2})}}}}.}

The specific orbital energy E = Q 2 2 r M + r 2 r 1 v 2 + q Q r {\displaystyle E={\frac {\sqrt {Q^{2}-2rM+r^{2}}}{r{\sqrt {1-v^{2}}}}}+{\frac {qQ}{r}}} and the specific relative angular momentum L = v   r 1 v 2 {\displaystyle L={\frac {v_{\perp }\ r}{\sqrt {1-v^{2}}}}} of the test-particle are conserved quantities of motion. v {\displaystyle v_{\parallel }} and v {\displaystyle v_{\perp }} are the radial and transverse components of the local velocity-vector. The local velocity is therefore v = v 2 + v 2 = ( E 2 1 ) r 2 Q 2 r 2 + 2 r M E 2 r 2 . {\displaystyle v={\sqrt {v_{\perp }^{2}+v_{\parallel }^{2}}}={\sqrt {\frac {(E^{2}-1)r^{2}-Q^{2}-r^{2}+2rM}{E^{2}r^{2}}}}.}

Alternative formulation of metric

The metric can be expressed in Kerr–Schild form like this: g μ ν = η μ ν + f k μ k ν f = G r 2 [ 2 M r Q 2 ] k = ( k x , k y , k z ) = ( x r , y r , z r ) k 0 = 1. {\displaystyle {\begin{aligned}g_{\mu \nu }&=\eta _{\mu \nu }+fk_{\mu }k_{\nu }\\f&={\frac {G}{r^{2}}}\left\\\mathbf {k} &=(k_{x},k_{y},k_{z})=\left({\frac {x}{r}},{\frac {y}{r}},{\frac {z}{r}}\right)\\k_{0}&=1.\end{aligned}}}

Notice that k is a unit vector. Here M is the constant mass of the object, Q is the constant charge of the object, and η is the Minkowski tensor.

See also

Notes

  1. Reissner, H. (1916). "Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie". Annalen der Physik. 355 (9): 106–120. Bibcode:1916AnP...355..106R. doi:10.1002/andp.19163550905. ISSN 0003-3804.
  2. Weyl, Hermann (1917). "Zur Gravitationstheorie". Annalen der Physik. 359 (18): 117–145. Bibcode:1917AnP...359..117W. doi:10.1002/andp.19173591804. ISSN 0003-3804.
  3. Nordström, G. (1918). "On the Energy of the Gravitational Field in Einstein's Theory". Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings. 20 (2): 1238–1245. Bibcode:1918KNAB...20.1238N.
  4. Jeffery, G. B. (1921). "The field of an electron on Einstein's theory of gravitation". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 99 (697): 123–134. Bibcode:1921RSPSA..99..123J. doi:10.1098/rspa.1921.0028. ISSN 0950-1207.
  5. Siegel, Ethan (2021-10-13). "Surprise: the Big Bang isn't the beginning of the universe anymore". Big Think. Retrieved 2024-09-03.
  6. Thibault Damour: Black Holes: Energetics and Thermodynamics, S. 11 ff.
  7. Qadir, Asghar (December 1983). "Reissner-Nordstrom repulsion". Physics Letters A. 99 (9): 419–420. Bibcode:1983PhLA...99..419Q. doi:10.1016/0375-9601(83)90946-5.
  8. Chandrasekhar, Subrahmanyan (2009). The mathematical theory of black holes. Oxford classic texts in the physical sciences (Reprinted ed.). Oxford: Clarendon Press. p. 205. ISBN 978-0-19-850370-5. And finally, the fact that the Reissner–Nordström solution has two horizons, an external event horizon and an internal 'Cauchy horizon', provides a convenient bridge to the study of the Kerr solution in the subsequent chapters.
  9. Andrew Hamilton: The Reissner Nordström Geometry (Casa Colorado)
  10. Carter, Brandon (25 October 1968). "Global Structure of the Kerr Family of Gravitational Fields". Physical Review. 174 (5): 1559–1571. doi:10.1103/PhysRev.174.1559. ISSN 0031-899X.
  11. Leonard Susskind: The Theoretical Minimum: Geodesics and Gravity, (General Relativity Lecture 4, timestamp: 34m18s)
  12. Hackmann, Eva; Xu, Hongxiao (2013). "Charged particle motion in Kerr-Newmann space-times". Physical Review D. 87 (12): 124030. arXiv:1304.2142. doi:10.1103/PhysRevD.87.124030. ISSN 1550-7998.
  13. Wald, Robert M. (2009). General relativity (Repr. ed.). Chicago: Univ. of Chicago Press. ISBN 978-0-226-87033-5.
  14. Nordebo, Jonatan. "The Reissner-Nordström metric" (PDF). diva-portal. Retrieved 8 April 2021.
  15. Smith, B. R. (December 2009). "First-order partial differential equations in classical dynamics". American Journal of Physics. 77 (12): 1147–1153. Bibcode:2009AmJPh..77.1147S. doi:10.1119/1.3223358. ISSN 0002-9505.
  16. Misner, Charles W.; Thorne, Kip S.; Wheeler, John Archibald; Kaiser, David; et al. (2017). Gravitation. Princeton, N.J: Princeton University Press. pp. 656–658. ISBN 978-0-691-17779-3. OCLC 1006427790.

References

External links

Black holes
Types
Size
Formation
Properties
Issues
Metrics
Alternatives
Analogs
Lists
Related
Notable
Relativity
Special
relativity
Background
Fundamental
concepts
Formulation
Phenomena
Spacetime
General
relativity
Background
Fundamental
concepts
Formulation
Phenomena
Advanced
theories
Solutions
Scientists
Category
Categories:
Reissner–Nordström metric Add topic