Misplaced Pages

Rule of mixtures

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Relation between properties and composition of a compound
The upper and lower bounds on the elastic modulus of a composite material, as predicted by the rule of mixtures. The actual elastic modulus lies between the curves.

In materials science, a general rule of mixtures is a weighted mean used to predict various properties of a composite material . It provides a theoretical upper- and lower-bound on properties such as the elastic modulus, ultimate tensile strength, thermal conductivity, and electrical conductivity. In general there are two models, one for axial loading (Voigt model), and one for transverse loading (Reuss model).

In general, for some material property E {\displaystyle E} (often the elastic modulus), the rule of mixtures states that the overall property in the direction parallel to the fibers may be as high as

E c = f E f + ( 1 f ) E m {\displaystyle E_{c}=fE_{f}+\left(1-f\right)E_{m}}

where

  • f = V f V f + V m {\displaystyle f={\frac {V_{f}}{V_{f}+V_{m}}}} is the volume fraction of the fibers
  • E f {\displaystyle E_{f}} is the material property of the fibers
  • E m {\displaystyle E_{m}} is the material property of the matrix

In the case of the elastic modulus, this is known as the upper-bound modulus, and corresponds to loading parallel to the fibers. The inverse rule of mixtures states that in the direction perpendicular to the fibers, the elastic modulus of a composite can be as low as

E c = ( f E f + 1 f E m ) 1 . {\displaystyle E_{c}=\left({\frac {f}{E_{f}}}+{\frac {1-f}{E_{m}}}\right)^{-1}.}

If the property under study is the elastic modulus, this quantity is called the lower-bound modulus, and corresponds to a transverse loading.

Derivation for elastic modulus

Voigt Modulus

Consider a composite material under uniaxial tension σ {\displaystyle \sigma _{\infty }} . If the material is to stay intact, the strain of the fibers, ϵ f {\displaystyle \epsilon _{f}} must equal the strain of the matrix, ϵ m {\displaystyle \epsilon _{m}} . Hooke's law for uniaxial tension hence gives

σ f E f = ϵ f = ϵ m = σ m E m {\displaystyle {\frac {\sigma _{f}}{E_{f}}}=\epsilon _{f}=\epsilon _{m}={\frac {\sigma _{m}}{E_{m}}}} 1

where σ f {\displaystyle \sigma _{f}} , E f {\displaystyle E_{f}} , σ m {\displaystyle \sigma _{m}} , E m {\displaystyle E_{m}} are the stress and elastic modulus of the fibers and the matrix, respectively. Noting stress to be a force per unit area, a force balance gives that

σ = f σ f + ( 1 f ) σ m {\displaystyle \sigma _{\infty }=f\sigma _{f}+\left(1-f\right)\sigma _{m}} 2

where f {\displaystyle f} is the volume fraction of the fibers in the composite (and 1 f {\displaystyle 1-f} is the volume fraction of the matrix).

If it is assumed that the composite material behaves as a linear-elastic material, i.e., abiding Hooke's law σ = E c ϵ c {\displaystyle \sigma _{\infty }=E_{c}\epsilon _{c}} for some elastic modulus of the composite E c {\displaystyle E_{c}} and some strain of the composite ϵ c {\displaystyle \epsilon _{c}} , then equations 1 and 2 can be combined to give

E c ϵ c = f E f ϵ f + ( 1 f ) E m ϵ m . {\displaystyle E_{c}\epsilon _{c}=fE_{f}\epsilon _{f}+\left(1-f\right)E_{m}\epsilon _{m}.}

Finally, since ϵ c = ϵ f = ϵ m {\displaystyle \epsilon _{c}=\epsilon _{f}=\epsilon _{m}} , the overall elastic modulus of the composite can be expressed as

E c = f E f + ( 1 f ) E m . {\displaystyle E_{c}=fE_{f}+\left(1-f\right)E_{m}.}

Reuss modulus

Now let the composite material be loaded perpendicular to the fibers, assuming that σ = σ f = σ m {\displaystyle \sigma _{\infty }=\sigma _{f}=\sigma _{m}} . The overall strain in the composite is distributed between the materials such that

ϵ c = f ϵ f + ( 1 f ) ϵ m . {\displaystyle \epsilon _{c}=f\epsilon _{f}+\left(1-f\right)\epsilon _{m}.}

The overall modulus in the material is then given by

E c = σ ϵ c = σ f f ϵ f + ( 1 f ) ϵ m = ( f E f + 1 f E m ) 1 {\displaystyle E_{c}={\frac {\sigma _{\infty }}{\epsilon _{c}}}={\frac {\sigma _{f}}{f\epsilon _{f}+\left(1-f\right)\epsilon _{m}}}=\left({\frac {f}{E_{f}}}+{\frac {1-f}{E_{m}}}\right)^{-1}}

since σ f = E ϵ f {\displaystyle \sigma _{f}=E\epsilon _{f}} , σ m = E ϵ m {\displaystyle \sigma _{m}=E\epsilon _{m}} .

Other properties

Similar derivations give the rules of mixtures for

  • mass density: ρ c = ρ f f + ρ M ( 1 f ) {\displaystyle \rho _{c}=\rho _{f}\centerdot f+\rho _{M}\centerdot (1-f)} where f is the atomic percent of fiber in the mixture.
  • ultimate tensile strength: ( f σ U T S , f + 1 f σ U T S , m ) 1 σ U T S , c f σ U T S , f + ( 1 f ) σ U T S , m {\displaystyle \left({\frac {f}{\sigma _{UTS,f}}}+{\frac {1-f}{\sigma _{UTS,m}}}\right)^{-1}\leq \sigma _{UTS,c}\leq f\sigma _{UTS,f}+\left(1-f\right)\sigma _{UTS,m}}
  • thermal conductivity: ( f k f + 1 f k m ) 1 k c f k f + ( 1 f ) k m {\displaystyle \left({\frac {f}{k_{f}}}+{\frac {1-f}{k_{m}}}\right)^{-1}\leq k_{c}\leq fk_{f}+\left(1-f\right)k_{m}}
  • electrical conductivity: ( f σ f + 1 f σ m ) 1 σ c f σ f + ( 1 f ) σ m {\displaystyle \left({\frac {f}{\sigma _{f}}}+{\frac {1-f}{\sigma _{m}}}\right)^{-1}\leq \sigma _{c}\leq f\sigma _{f}+\left(1-f\right)\sigma _{m}}

See also

When considering the empirical correlation of some physical properties and the chemical composition of compounds, other relationships, rules, or laws, also closely resembles the rule of mixtures:

References

  1. ^ Alger, Mark. S. M. (1997). Polymer Science Dictionary (2nd ed.). Springer Publishing. ISBN 0412608707.
  2. ^ "Stiffness of long fibre composites". University of Cambridge. Retrieved 1 January 2013.
  3. ^ Askeland, Donald R.; Fulay, Pradeep P.; Wright, Wendelin J. (2010-06-21). The Science and Engineering of Materials (6th ed.). Cengage Learning. ISBN 9780495296027.
  4. Voigt, W. (1889). "Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper". Annalen der Physik. 274 (12): 573–587. Bibcode:1889AnP...274..573V. doi:10.1002/andp.18892741206.
  5. Reuss, A. (1929). "Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle". Zeitschrift für Angewandte Mathematik und Mechanik. 9 (1): 49–58. Bibcode:1929ZaMM....9...49R. doi:10.1002/zamm.19290090104.
  6. ^ "Derivation of the rule of mixtures and inverse rule of mixtures". University of Cambridge. Retrieved 1 January 2013.

External links

Categories:
Rule of mixtures Add topic