Misplaced Pages

Friendly number

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Solitary number) Two or more natural numbers with a common abundancy index Not to be confused with Amicable number.

In number theory, friendly numbers are two or more natural numbers with a common abundancy index, the ratio between the sum of divisors of a number and the number itself. Two numbers with the same "abundancy" form a friendly pair; n numbers with the same abundancy form a friendly n-tuple.

Being mutually friendly is an equivalence relation, and thus induces a partition of the positive naturals into clubs (equivalence classes) of mutually friendly numbers.

A number that is not part of any friendly pair is called solitary.

The abundancy index of n is the rational number σ(n) / n, in which σ denotes the sum of divisors function. A number n is a friendly number if there exists mn such that σ(m) / m = σ(n) / n. Abundancy is not the same as abundance, which is defined as σ(n) − 2n.

Abundancy may also be expressed as σ 1 ( n ) {\displaystyle \sigma _{-1}(n)} where σ k {\displaystyle \sigma _{k}} denotes a divisor function with σ k ( n ) {\displaystyle \sigma _{k}(n)} equal to the sum of the k-th powers of the divisors of n.

The numbers 1 through 5 are all solitary. The smallest friendly number is 6, forming for example, the friendly pair 6 and 28 with abundancy σ(6) / 6 = (1+2+3+6) / 6 = 2, the same as σ(28) / 28 = (1+2+4+7+14+28) / 28 = 2. The shared value 2 is an integer in this case but not in many other cases. Numbers with abundancy 2 are also known as perfect numbers. There are several unsolved problems related to the friendly numbers.

In spite of the similarity in name, there is no specific relationship between the friendly numbers and the amicable numbers or the sociable numbers, although the definitions of the latter two also involve the divisor function.

Examples

As another example, 30 and 140 form a friendly pair, because 30 and 140 have the same abundancy:

σ ( 30 ) 30 = 1 + 2 + 3 + 5 + 6 + 10 + 15 + 30 30 = 72 30 = 12 5 {\displaystyle {\dfrac {\sigma (30)}{30}}={\dfrac {1+2+3+5+6+10+15+30}{30}}={\dfrac {72}{30}}={\dfrac {12}{5}}}
σ ( 140 ) 140 = 1 + 2 + 4 + 5 + 7 + 10 + 14 + 20 + 28 + 35 + 70 + 140 140 = 336 140 = 12 5 . {\displaystyle {\dfrac {\sigma (140)}{140}}={\dfrac {1+2+4+5+7+10+14+20+28+35+70+140}{140}}={\dfrac {336}{140}}={\dfrac {12}{5}}.}

The numbers 2480, 6200 and 40640 are also members of this club, as they each have an abundancy equal to 12/5.

For an example of odd numbers being friendly, consider 135 and 819 (abundancy 16/9 (deficient)). There are also cases of even numbers being friendly to odd numbers, such as 42, 3472, 56896, ... (sequence A347169 in the OEIS) and 544635 (abundancy of 16/7). The odd friend may be less than the even one, as in 84729645 and 155315394 (abundancy of 896/351), or in 6517665, 14705145 and 2746713837618 (abundancy of 64/27).

A square number can be friendly, for instance both 693479556 (the square of 26334) and 8640 have abundancy 127/36 (this example is credited to Dean Hickerson).

Status for small n

In the table below, blue numbers are proven friendly (sequence A074902 in the OEIS), red numbers are proven solitary (sequence A095739 in the OEIS), numbers n such that n and σ ( n ) {\displaystyle \sigma (n)} are coprime (sequence A014567 in the OEIS) are left uncolored, though they are known to be solitary. Other numbers have unknown status and are yellow.

The sum of an integer's unique factors, up to n=2000.
The friendly number index of integers up to 2000, computed by calculating the sum of its unique factors and dividing by n. In addition to apparent noise, distinct lines begin to appear.
n {\displaystyle n} σ ( n ) {\displaystyle \sigma (n)} σ ( n ) n {\displaystyle {\frac {\sigma (n)}{n}}}
1 1 1
2 3 3/2
3 4 4/3
4 7 7/4
5 6 6/5
6 12 2
7 8 8/7
8 15 15/8
9 13 13/9
10 18 9/5
11 12 12/11
12 28 7/3
13 14 14/13
14 24 12/7
15 24 8/5
16 31 31/16
17 18 18/17
18 39 13/6
19 20 20/19
20 42 21/10
21 32 32/21
22 36 18/11
23 24 24/23
24 60 5/2
25 31 31/25
26 42 21/13
27 40 40/27
28 56 2
29 30 30/29
30 72 12/5
31 32 32/31
32 63 63/32
33 48 16/11
34 54 27/17
35 48 48/35
36 91 91/36
n {\displaystyle n} σ ( n ) {\displaystyle \sigma (n)} σ ( n ) n {\displaystyle {\frac {\sigma (n)}{n}}}
37 38 38/37
38 60 30/19
39 56 56/39
40 90 9/4
41 42 42/41
42 96 16/7
43 44 44/43
44 84 21/11
45 78 26/15
46 72 36/23
47 48 48/47
48 124 31/12
49 57 57/49
50 93 93/50
51 72 24/17
52 98 49/26
53 54 54/53
54 120 20/9
55 72 72/55
56 120 15/7
57 80 80/57
58 90 45/29
59 60 60/59
60 168 14/5
61 62 62/61
62 96 48/31
63 104 104/63
64 127 127/64
65 84 84/65
66 144 24/11
67 68 68/67
68 126 63/34
69 96 32/23
70 144 72/35
71 72 72/71
72 195 65/24
n {\displaystyle n} σ ( n ) {\displaystyle \sigma (n)} σ ( n ) n {\displaystyle {\frac {\sigma (n)}{n}}}
73 74 74/73
74 114 57/37
75 124 124/75
76 140 35/19
77 96 96/77
78 168 28/13
79 80 80/79
80 186 93/40
81 121 121/81
82 126 63/41
83 84 84/83
84 224 8/3
85 108 108/85
86 132 66/43
87 120 40/29
88 180 45/22
89 90 90/89
90 234 13/5
91 112 16/13
92 168 42/23
93 128 128/93
94 144 72/47
95 120 24/19
96 252 21/8
97 98 98/97
98 171 171/98
99 156 52/33
100 217 217/100
101 102 102/101
102 216 36/17
103 104 104/103
104 210 105/52
105 192 64/35
106 162 81/53
107 108 108/107
108 280 70/27
n {\displaystyle n} σ ( n ) {\displaystyle \sigma (n)} σ ( n ) n {\displaystyle {\frac {\sigma (n)}{n}}}
109 110 110/109
110 216 108/55
111 152 152/111
112 248 31/14
113 114 114/113
114 240 40/19
115 144 144/115
116 210 105/58
117 182 14/9
118 180 90/59
119 144 144/119
120 360 3
121 133 133/121
122 186 93/61
123 168 56/41
124 224 56/31
125 156 156/125
126 312 52/21
127 128 128/127
128 255 255/128
129 176 176/129
130 252 126/65
131 132 132/131
132 336 28/11
133 160 160/133
134 204 102/67
135 240 16/9
136 270 135/68
137 138 138/137
138 288 48/23
139 140 140/139
140 336 12/5
141 192 64/47
142 216 108/71
143 168 168/143
144 403 403/144

Solitary numbers

A number that belongs to a singleton club, because no other number is friendly with it, is a solitary number. All prime numbers are known to be solitary, as are powers of prime numbers. More generally, if the numbers n and σ(n) are coprime – meaning that the greatest common divisor of these numbers is 1, so that σ(n)/n is an irreducible fraction – then the number n is solitary (sequence A014567 in the OEIS). For a prime number p we have σ(p) = p + 1, which is co-prime with p.

No general method is known for determining whether a number is friendly or solitary.

Is 10 a solitary number?

The smallest number whose classification is unknown is 10; it is conjectured to be solitary. If it is not, its smallest friend is at least 10 30 {\displaystyle 10^{30}} . J.Ward proved that any positive integer n {\displaystyle n} other than 10 with abundancy index 9/5 must be a square with at least six distinct prime factors, the smallest being 5. Further, at least one of the prime factors must be congruent to 1 modulo 3 and appear with an exponent congruent to 2 modulo 6 in the prime power factorization of n {\displaystyle n} . In the authors proposed necessary upper bounds for the second, third and fourth smallest prime divisors of friends of 10, if n {\displaystyle n} is a friend of 10 and if q 2 , q 3 , q 4 {\displaystyle q_{2},q_{3},q_{4}} are the second, third, fourth smallest prime divisors of n {\displaystyle n} respectively, then

7 q 2 < 7 ω ( n ) 3 ( log 7 ω ( n ) 3 + 2 log log 7 ω ( n ) 3 ) , {\displaystyle 7\leq q_{2}<\left\lceil {\frac {7\omega (n)}{3}}\right\rceil {\biggl (}\log \left\lceil {\frac {7\omega (n)}{3}}\right\rceil +2\log \log \left\lceil {\frac {7\omega (n)}{3}}\right\rceil {\biggr )},}

11 q 3 < 180 ω ( n ) 41 ( log 180 ω ( n ) 41 + 2 log log 180 ω ( n ) 41 ) , {\displaystyle 11\leq q_{3}<\left\lceil {\frac {180\omega (n)}{41}}\right\rceil {\biggl (}\log \left\lceil {\frac {180\omega (n)}{41}}\right\rceil +2\log \log \left\lceil {\frac {180\omega (n)}{41}}\right\rceil {\biggr )},}

13 q 4 < 390 ω ( n ) 47 ( log 390 ω ( n ) 47 + 2 log log 390 ω ( n ) 47 ) , {\displaystyle 13\leq q_{4}<\left\lceil {\frac {390\omega (n)}{47}}\right\rceil {\biggl (}\log \left\lceil {\frac {390\omega (n)}{47}}\right\rceil +2\log \log \left\lceil {\frac {390\omega (n)}{47}}\right\rceil {\biggr )},}

where ω ( n ) {\displaystyle \omega (n)} is the number of distinct prime divisors of n {\displaystyle n} and . {\displaystyle \left\lceil .\right\rceil } is the ceiling function. Further, they proposed reasonable upper bounds for all prime divisors of friends of 10 in , for any smallest r-th prime divisor q r {\displaystyle q_{r}} of n {\displaystyle n} , we have

q r < L ( log L + 2 log log L ) , {\displaystyle q_{r}<L(\log L+2\log \log L),} where

L = A ω ( n ) B {\displaystyle L=\left\lceil {\frac {{\mathcal {A}}\omega (n)}{\mathcal {B}}}\right\rceil } , A B > 1 36 25 i = 4 r + 1 ( 1 1 p i ) 1 {\displaystyle {\frac {\mathcal {A}}{\mathcal {B}}}>{\frac {1}{{\frac {36}{25}}\prod _{i=4}^{r+1}{\bigl (}1-{\frac {1}{p_{i}}}{\bigr )}-1}}} ,

where p i {\displaystyle p_{i}} is the i-th prime number and A , B Z + {\displaystyle {\mathcal {A,B}}\in \mathbb {Z} ^{+}} .

Small numbers with a relatively large smallest friend do exist: for instance, 24 is friendly, with its smallest friend 91,963,648.

Large clubs

It is an open problem whether there are infinitely large clubs of mutually friendly numbers. The perfect numbers form a club, and it is conjectured that there are infinitely many perfect numbers (at least as many as there are Mersenne primes), but no proof is known. There are clubs with more known members: in particular, those formed by multiply perfect numbers, which are numbers whose abundancy is an integer. Although some are known to be quite large, clubs of multiply perfect numbers (excluding the perfect numbers themselves) are conjectured to be finite.

Asymptotic density

Every pair a, b of friendly numbers gives rise to a positive proportion of all natural numbers being friendly (but in different clubs), by considering pairs na, nb for multipliers n with gcd(n, ab) = 1. For example, the "primitive" friendly pair 6 and 28 gives rise to friendly pairs 6n and 28n for all n that are congruent to 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, or 41 modulo 42.

This shows that the natural density of the friendly numbers (if it exists) is positive.

Anderson and Hickerson proposed that the density should in fact be 1 (or equivalently that the density of the solitary numbers should be 0). According to the MathWorld article on Solitary Number (see References section below), this conjecture has not been resolved, although Pomerance thought at one point he had disproved it.

Notes

  1. "Numbers with Cool Names: Amicable, Sociable, Friendly". 10 May 2023. Retrieved 26 July 2023.
  2. ^ Cemra, Jason (23 July 2022). "10 Solitary Check". Github/CemraJC/Solidarity.
  3. ^ "OEIS sequence A074902". On-Line Encyclopedia of Integer Sequences. Retrieved 10 July 2020.
  4. Ward, Jeffrey (2008-06-06), Does Ten Have a Friend?, doi:10.48550/arXiv.0806.1001, retrieved 2025-01-14
  5. Mandal, Sourav; Mandal, Sagar (2024-11-04), Upper bounds for the prime divisors of friends of 10, doi:10.48550/arXiv.2404.05771, retrieved 2025-01-14
  6. Mandal, Sagar; Mandal, Sourav (2024-11-10), Generalizing upper bounds for the prime divisors of friendly number of 10, doi:10.48550/arXiv.2412.02701, retrieved 2025-01-15
  7. ^ Anderson, C. W.; Hickerson, Dean; Greening, M. G. (1977). "6020". The American Mathematical Monthly. 84 (1): 65–66. doi:10.2307/2318325. JSTOR 2318325.

References

Divisibility-based sets of integers
Overview Divisibility of 60
Factorization forms
Constrained divisor sums
With many divisors
Aliquot sequence-related
Base-dependent
Other sets
Classes of natural numbers
Powers and related numbers
Of the form a × 2 ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
Figurate numbers
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Primes
Pseudoprimes
Arithmetic functions and dynamics
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Other prime factor or divisor related numbers
Numeral system-dependent numbers
Arithmetic functions
and dynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Binary numbers
Generated via a sieve
Sorting related
Natural language related
Graphemics related
Categories:
Friendly number Add topic