In stable homotopy theory, a branch of mathematics, the sphere spectrum S is the monoidal unit in the category of spectra. It is the suspension spectrum of S, i.e., a set of two points. Explicitly, the nth space in the sphere spectrum is the n-dimensional sphere S, and the structure maps from the suspension of S to S are the canonical homeomorphisms. The k-th homotopy group of a sphere spectrum is the k-th stable homotopy group of spheres.
The localization of the sphere spectrum at a prime number p is called the local sphere at p and is denoted by .
See also
References
- Adams, J. Frank (1974), Stable homotopy and generalised homology, Chicago Lectures in Mathematics, University of Chicago Press, MR 0402720
This topology-related article is a stub. You can help Misplaced Pages by expanding it. |