Misplaced Pages

Stephen J. Lippard

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Stephen Lippard) American chemist

Stephen Lippard
Lippard in 2017
BornStephen James Lippard
(1940-10-12) October 12, 1940 (age 84)
Pittsburgh, Pennsylvania, U.S.
NationalityAmerican
Alma materHaverford College (B.S.) (1962)
Massachusetts Institute of Technology (Ph.D) (1965)
AwardsWilliam H. Nichols Medal (1995)
National Medal of Science (2004)
Linus Pauling Award (2009)
Priestley Medal (2014)
Welch Award in Chemistry (2016)
American Institute of Chemists Gold Medal (2017)
Scientific career
Fields
Institutions
Doctoral advisorF. Albert Cotton
Doctoral students
Other notable studentsChristopher Chang (postdoc), Christine S. Chow (postdoc), Jack R. Norton (postdoc), JoAnne Stubbe (postdoc), William B. Tolman (postdoc)
Websitelippardlab.mit.edu
External videos
video icon "Stephen J. Lippard, Ph.D., 2015 Benjamin Franklin Medal in Chemistry", Franklin Institute
video icon "Prof. Stephen J. Lippard receives highest honors, 2014 Priestley Medal", American Chemical Society

Stephen James Lippard (born October 12, 1940) is the Arthur Amos Noyes Emeritus Professor of Chemistry at the Massachusetts Institute of Technology. He is considered one of the founders of bioinorganic chemistry, studying the interactions of nonliving substances such as metals with biological systems. He is also considered a founder of metalloneurochemistry, the study of metal ions and their effects in the brain and nervous system. He has done pioneering work in understanding protein structure and synthesis, the enzymatic functions of methane monooxygenase (MMO), and the mechanisms of cisplatin anticancer drugs. His work has applications for the treatment of cancer, for bioremediation of the environment, and for the development of synthetic methanol-based fuels.

Education

Lippard was born in Pittsburgh, Pennsylvania, where he graduated from Taylor Allderdice High School in 1958. He earned his bachelor's degree from Haverford College in 1962. Originally interested in attending medical school, a talk on medicinal chemistry by visiting chemist Francis P.J. Dwyer inspired Lippard to focus on inorganic chemistry for his Ph.D. Lippard worked with F. Albert Cotton at MIT on rhenium oxo complexes and clusters. He completed the thesis Chemistry of the bromorhenates, receiving his Ph.D. from MIT in 1965.

Career

Lippard joined the faculty of Columbia University in 1966 as an assistant professor. He was promoted to associate professor with tenure in 1969 and full Professor in 1972.

In 1983, Lippard returned to MIT as a professor of chemistry. He has held the Arthur Amos Noyes Professorship of Chemistry at MIT since 1989. He and his wife Judy were housemasters at MIT's MacGregor House from 1991 to 1995. Lippard served as the head of the MIT chemistry department from 1995 to 2005. He is recognized for his scientific work and for his work with students, having mentored more than 100 PhDs. His students are active in a wide range of areas, in part because "He delivers a strong message that you need to go to the frontier of science and pick interesting problems." Forty percent of his graduate students have been women, who he gives "high-risk, high-reward projects".

Lippard has co-authored over 900 scholarly and professional articles, and co-authored the textbook Principles of Bioinorganic Chemistry (1994) with Jeremy Berg. He edited the book series Progress in Inorganic Chemistry from Volume 11 to 40. He was an Associate Editor of the journal Inorganic Chemistry from 1983 to 1989, and an Associate Editor of the Journal of the American Chemical Society from 1989 to 2013, as well as serving on the editorial boards of numerous other journals.

Research

Lippard's research activities are at the interface of biology and inorganic chemistry. Lippard focuses on understanding the physical and structural properties of metal complexes, their synthesis and reactions, and the involvement of metal ions in biological systems. The formation and breaking of molecular bonds underlie many biochemical transformations. Purely inorganic substances such as iron are often required in essential organic reactions, e.g. oxygen binding in the hemoglobin family. Lippard attempts to better understand the role of metal complexes in the physiology and pathology of existing biological systems, and to identify possible applications of metal ions in medical treatment.

He has made major contributions in a number of areas, including the development of platinum-based anticancer drugs such as the cisplatin family. Another area of interest is the structure and function of methane and enzymes that consume greenhouse gas hydrocarbons. In metalloneurochemistry, he studies the molecular activity of metal ions in the brain and develops optical and MRI sensors for binding, tracking, and measuring metal ions as they interact with neurotransmitters and other biological signaling agents.

Cisplatin

Cisplatin

Cisplatin is one of the most frequently used chemotherapy medications for many forms of cancer. It was discovered in the 1960s by Barnett Rosenberg, but its mechanism of action was not understood.

Early work in Lippard's lab on the interaction of metal complexes with nucleic acids led to the discovery of the first metallo-intercalators and eventually to the understanding of the mechanisms of cisplatin. Lippard and his students examined sequences of DNA and RNA and incorporated sulfur atoms into the sugar-phosphate backbone, where they selectively bound mercury or platinum complexes to specific positions. Karen Jennette's discovery that sterically encumbered platinum complexes were more successful in binding to sulfur atoms in tRNA than mercury salts led researchers to propose that the platinum complexes intercalated between the double-stranded RNA's base pairs. It was the first experimental demonstration to show a metal complex binding to DNA by intercalation: platinum terpyridine complexes inserted between the DNA base pairs and unwound the double helix. Using fiber X-ray diffraction, Peter Bond and others were able to display the intercalated platinum complex and to confirm predictions that the spacing of intercalators in DNA base pairs would follow the neighbor exclusion rule.

This established the groundwork for subsequent work on intercalative binding. Jacqueline Barton and others have used electron micrography to show that the covalent binding of platinum complexes changes the supercoiling of the DNA, "bending and unwinding" the double helix. Further experiments have explored the mechanisms through which platinum drugs bind their biological targets and led to insights into their anticancer activity. Important results include the identification of an intrastrand d(pGpG) cross-link as the major adduct on platinated single-stranded DNA, identification of the major adduct on double-stranded DNA, the binding of high-mobility-group proteins to platinated DNA cross-links. Using X-ray crystallography and other techniques, Lippard and his coworkers have examined the mechanisms involved in binding cisplatin to DNA fragments, to better understand how cisplatin invades tumor cells and interferes with their activity. The interaction of Cisplatin and DNA results in the formation of DNA-DNA interstrand and intrastrand crosslinks which block DNA replication and transcription mechanisms. As well as the intrastrand cross links created by cisplatin, monofunctional metal complexes may suggest possible cancer treatments.

A related line of research in Lippard's laboratory involves platinum blues. Jacqueline Barton was the first person to synthesize and structurally characterize a crystalline platinum blue, pyridone blue. Since then, extensive research has been done on the structure, properties, and reactions of such complexes.

Methane monooxygenases

Particulate methane monooxygenase

Members of the Lippard laboratory studying macromolecular crystallography have explored the structure, mechanisms and activity of bacterial multicomponent monooxygenases. Methane monooxygenases are enzymes that occur in bacteria called methanotrophs. The primary function of this enzyme is the hydroxylation of methane to methanol as the first step in methane metabolism.

Amy Rosenzweig determined the protein x-ray structure of the soluble form of methane monooxygenase (MMO) as Lippard's graduate student. Lippard has used X-ray diffraction and a variety of other methods to study such compounds, greatly expanding our understanding of their structure and function. MMO is vital to Earth's carbon cycle, and knowledge of its structure may help to develop clean technologies for methanol-based fuels. Methane monoxygenases may also be useful for bioremediation.

Iron complexes

Lippard and his students have also studied the synthesis of diiron complexes such as diiron hydroxylase to better understand the activities of metal atoms in biological molecules. They have developed model compounds for carboxylate-bridged diiron metalloenzymes which can be compared with corresponding biological forms. They have synthesized analogues of the diiron carboxylate cores of MMO and related carboxylate-bridged diiron proteins such as the dioxygen transporter hemerythrin. In 2010, Lippard received the Ronald Breslow Award for his work on nonheme iron proteins.

Also exciting was the synthesis of a "molecular ferric wheel" by Kingsley Taft, the first wheel structure to be observed in self-assembled polymetallic chemistry. A nearly perfect circle containing ten ferric ions, the structure spontaneously assembled in methanolic solutions of diiron(III) oxo complexes, which were being studied to better understand polyiron oxo protein cores like those of hemerythrin. Although no particular use is known for the ferric wheel, it and subsequent ring-shaped homometallic molecular clusters are of interest as a subclass of molecular magnets. Another novel complex was a "ferric triple-decker", containing three parallel triangular iron units and a triple bridge of six citrate ligands.

Metalloneurochemistry

Lippard is considered a founder of metalloneurochemistry, the study of metal ions at the molecular level as they affect the brain and the nervous system. Working at the interface of inorganic chemistry and neuroscience, he has devised fluorescent imaging agents for studying mobile zinc and nitric oxide and their effects on neurotransmission and other forms of biological signaling.

Companies

In 2011 Lippard founded Blend Therapeutics with Omid Cameron Farokhzad and Robert Langer, in Watertown, Massachusetts. Blend focused on developing anti-cancer medicines for treatment of solid tumor cancers, with the goal of targeting cancerous tissue and leaving healthy cells alone. Its proprietary drug candidates included BTP-114, a cisplatin prodrug, and BTP-277, a targeting ligand designed to bond selectively to tumor cells. As of 2016, Blend split off into two separate companies: Tarveda and Placon, to follow these two approaches.

Placon Therapeutics is developing platinum-based cancer therapies. These include BTP-114, the first clinical candidate to use an albumin-conjugating, platinum-prodrug platform, based on Lippard's work. BTP-114 has been cleared for Phase 1 cancer-treatment clinical trials by the Food and Drug Administration (FDA).

Tarveda Therapeutics is developing BTP-277 (renamed PEN-221) and other Pentarins, a proprietary class of therapeutics which use peptide ligands to carry a target drug to tumor cells. Pentarins are nanoparticle drugs, similar to antibody-drug conjugates but smaller, that have been described as "mini-smart bombs". They are believed to be capable of penetrating dense tumor-based cancers.

Honors and awards

Lippard has been elected to the National Academy of Sciences, the National Institute of Medicine, the American Academy of Arts and Sciences, and the American Philosophical Society. He is an honorary member of the Royal Irish Academy (2002), the Italian Chemical Society (1996), and the German National Academy of Sciences (Leopoldina) (2004), and is an external scientific member of the Max-Planck Institute (1996) in Germany.

He has received honorary Doctorate of Science degrees from Haverford College, Texas A&M University, and the University of South Carolina, and an honorary Doctorate degree from Hebrew University of Jerusalem.

Lippard has received many awards throughout his career, most notably the 2004 National Medal of Science, the 2014 Priestley Medal of the American Chemical Society, its highest award, and the 2014 James R. Killian lectureship at MIT, given to one faculty member of the Institute per year. He is also the recipient of the Linus Pauling Medal, Theodore W. Richards Medal, and the William H. Nichols Medal. For his work in bioinorganic and biomimetic chemistry, Lippard received the Ronald Breslow Award and the Alfred Bader Award from the American Chemical Society (ACS). For research in inorganic and organometallic chemistry, as well as his role as an educator, he was honored with ACS awards for Inorganic Chemistry and for Distinguished Service in Inorganic Chemistry. In 2015, Lippard won the Benjamin Franklin Medal in Chemistry bestowed by The Franklin Institute. In 2016, he received the F. A. Cotton Medal for excellence in chemical research and the Welch Award in Chemistry from the Robert A. Welch Foundation. In 2017, he was chosen to receive the American Institute of Chemists Gold Medal.

Personal life

Stephen Lippard married Judith Ann Drezner in 1964. They have two sons, Josh and Alex, a daughter-in-law Sandra, and twin granddaughters, Lucy and Annie. Judy Lippard died on September 9, 2013. Stephen moved to Washington, DC, in 2017, where he remains active in science, writing, consulting, and grandfathering, while expanding his harpsichord playing and cooking skills.

References

  1. ^ "Stephen J. Lippard". Lippard Research Group. Retrieved 23 March 2017.
  2. ^ Halford, Bethany (17 March 2014). "Trailblazer And Mentor". Chemical & Engineering News. 92 (11). Retrieved 24 March 2017.
  3. ^ "Stephen J. Lippard". The Franklin Institute. 27 October 2014. Retrieved 24 May 2017.
  4. ^ "'Metals for Life' Symposium to honor 2015 Benjamin Franklin Laureate in Chemistry". University of Delaware. 10 April 2015. Retrieved 24 March 2017.
  5. ^ Koukkou, Anna-Irini (2011). Microbial bioremediation of non-metals : current research. Norfolk: Caister Academic Press. pp. 217–232. ISBN 9781904455837. Retrieved 26 May 2017.
  6. "Stephen James Lippard". Chemistry Tree. Retrieved 23 March 2017.
  7. Morrissey, Susan (26 February 2007). "F. Albert Cotton Dies". Chemical & Engineering News. 85 (9): 11.
  8. ^ "Biography" (PDF). The Nucleus. LXXX (7): 4, 6. March 2002.
  9. "Curriculum Vitae Professor Dr. Stephen J. Lippard" (PDF). Leopoldina. Retrieved 23 March 2017.
  10. Lane, Jennifer (10 March 1995). "MacGregor, Burton Housmasters to Leave". The Tech. Retrieved 26 May 2017.
  11. ^ "American Chemical Society's highest honor goes to Stephen J. Lippard, Ph.D." American Chemical Society. Retrieved 10 June 2013.
  12. ^ Trafton, Anne (16 May 2013). "Stephen Lippard wins faculty's Killian Award". MIT Department of Chemistry. Retrieved 24 March 2017.
  13. Lippard, Stephen J.; Berg, Jeremy M., eds. (1994). Principles of bioinorganic chemistry. Mill Valley, Calif.: University Science Books. ISBN 978-0935702729.
  14. Karlin, Kenneth D, ed. (2007). Progress in Inorganic Chemistry (Series). Vol. 55. doi:10.1002/SERIES2229. ISBN 9780470144428.
  15. "MIT's Lippard to Present Allergan Distinguished Lecture March 23". Inside CSULB. 15 March 2011.
  16. ^ Lippard, Stephen J. (1994). "Metals in Medicine" (PDF). In Bertini, Ivano; Gray, Harry B.; Lippard, Stephen J.; Valentine, Joan Selverstone (eds.). Bioinorganic chemistry. Mill Valley, Calif.: Univ. Science Books. pp. 505–583. ISBN 978-0-935702-57-6. Retrieved 25 May 2017.
  17. Lippard, Stephen J. (October 2006). "The inorganic side of chemical biology". Nature Chemical Biology. 2 (10): 504–507. doi:10.1038/nchembio1006-504. PMID 16983380. S2CID 45014853.
  18. ^ Johnstone, Timothy C.; Suntharalingam, Kogularamanan; Lippard, Stephen J. (9 March 2016). "The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs". Chemical Reviews. 116 (5): 3436–3486. doi:10.1021/acs.chemrev.5b00597. PMC 4792284. PMID 26865551.
  19. Wang, Weixue; Iacob, Roxana E.; Luoh, Rebecca P.; Engen, John R.; Lippard, Stephen J. (9 July 2014). "Electron Transfer Control in Soluble Methane Monooxygenase". Journal of the American Chemical Society. 136 (27): 9754–9762. doi:10.1021/ja504688z. PMC 4105053. PMID 24937475.
  20. Lippard, Stephen J. "Investigation of Zinc Neurochemistry by Optical Sensing and MRI". Grantome. Retrieved 25 March 2017.
  21. ^ "MIT Chemistry Directory Stephen J. Lippard Arthur Amos Noyes Professor". MIT Chemistry. Retrieved 25 March 2017.
  22. ^ Brown, J. M.; Mehta, M.P.; Nieder, Carsten (2006). Multimodal concepts for integration of cytotoxic drugs with 73 tables. Berlin: Springer. ISBN 9783540256557. Retrieved 25 May 2017.
  23. Rosenberg, B.; Van Camp, L.; Krigas, T. (1965). "Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode". Nature. 205 (4972): 698–9. Bibcode:1965Natur.205..698R. doi:10.1038/205698a0. PMID 14287410. S2CID 9543916.
  24. ^ Lippard, Stephen J. (17 March 2014). "The Life Of A Professor". Chemical & Engineering News. 92 (11): 14–18. doi:10.1021/cen-09211-cover2. Retrieved 25 May 2017.
  25. ^ Lippard, Stephen J. (1991). "Platinum DNA Chemistry". In Howell, Stephen B. (ed.). Platinum and other metal coordination compounds in cancer chemotherapy. New York: Plenum Press. pp. 1–12. ISBN 9780306440274. Retrieved 25 May 2017.
  26. Jennette, KW; Lippard, SJ; Vassiliades, GA; Bauer, WR (October 1974). "Metallointercalation reagents. 2-hydroxyethanethiolato(2,2',2'-terpyridine)-platinum(II) monocation binds strongly to DNA by intercalation". Proceedings of the National Academy of Sciences of the United States of America. 71 (10): 3839–43. Bibcode:1974PNAS...71.3839J. doi:10.1073/pnas.71.10.3839. PMC 434279. PMID 4530265.
  27. Bond, PJ; Langridge, R; Jennette, KW; Lippard, SJ (December 1975). "X-ray fiber diffraction evidence for neighbor exclusion binding of a platinum metallointercalation reagent to DNA". Proceedings of the National Academy of Sciences of the United States of America. 72 (12): 4825–9. Bibcode:1975PNAS...72.4825B. doi:10.1073/pnas.72.12.4825. PMC 388824. PMID 1061071.
  28. Cohen, GL; Bauer, WR; Barton, JK; Lippard, SJ (9 March 1979). "Binding of cis- and trans-dichlorodiammineplatinum(II) to DNA: evidence for unwinding and shortening of the double helix". Science. 203 (4384): 1014–6. Bibcode:1979Sci...203.1014C. doi:10.1126/science.370979. PMID 370979.
  29. Zeglis, Brian M.; Pierre, Valerie C.; Barton, Jacqueline K. (2007). "Metallo-intercalators and metallo-insertors" (PDF). Chemical Communications (44): 4565–79. doi:10.1039/b710949k. PMC 2790054. PMID 17989802.
  30. Sherman, Suzanne E.; Lippard, Stephen J. (October 1987). "Structural aspects of platinum anticancer drug interactions with DNA". Chemical Reviews. 87 (5): 1153–1181. doi:10.1021/cr00081a013.
  31. Zhang, Christiana Xin; Lippard, Stephen J (August 2003). "New metal complexes as potential therapeutics". Current Opinion in Chemical Biology. 7 (4): 481–489. doi:10.1016/S1367-5931(03)00081-4. PMID 12941423.
  32. Park, Ga Young; Wilson, Justin J.; Song, Ying; Lippard, Stephen J. (24 July 2012). "Phenanthriplatin, a monofunctional DNA-binding platinum anticancer drug candidate with unusual potency and cellular activity profile". Proceedings of the National Academy of Sciences. 109 (30): 11987–11992. Bibcode:2012PNAS..10911987P. doi:10.1073/pnas.1207670109. PMC 3409760. PMID 22773807.
  33. Matsumoto, Kazuko (1999). "Inorganic and organometallic chemistry of cisplatin-derived diplatinum(III) complexes". In Lippert, Bernhard (ed.). Cisplatin : chemistry and biochemistry of a leading anticancer drug. Zürich: Verlag Helvetica Chimica Acta. pp. 456–458. ISBN 9783906390208. Retrieved 25 May 2017.
  34. Barton, J. K.; Rabinowitz, H. N.; Szalda, D. J.; Lippard, S. J. (April 1977). "Synthesis and crystal structure of cis-diammineplatinum .alpha.-pyridone blue". Journal of the American Chemical Society. 99 (8): 2827–2829. doi:10.1021/ja00450a085.
  35. Tinberg, Christine E.; Lippard, Stephen J. (19 April 2011). "Dioxygen Activation in Soluble Methane Monooxygenase". Accounts of Chemical Research. 44 (4): 280–288. doi:10.1021/ar1001473. PMC 3079780. PMID 21391602.
  36. Rosenzweig, Amy C.; Frederick, Christin A.; Lippard, Stephen J.; Nordlund, Pär (9 December 1993). "Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane". Nature. 366 (6455): 537–543. Bibcode:1993Natur.366..537R. doi:10.1038/366537a0. PMID 8255292. S2CID 4237249.
  37. Que, Lawrence; True, Anne E. (1990). Dinuclear Iron- and Manganese-Oxo Sites in Biology. Progress in Inorganic Chemistry. Vol. 38. pp. 97–200. doi:10.1002/9780470166390.ch3. ISBN 9780470166963. Retrieved 24 March 2017. {{cite book}}: |journal= ignored (help)
  38. Friesner, R. A.; Baik, M.-H.; Gherman, B. F.; Guallar, V.; Wirstam, M.; Murphy, R. B.; Lippard, S. J. (2003). "How iron-containing proteins control dioxygen chemistry: a detailed atomic level description via accurate quantum chemical and mixed quantum mechanics/molecular mechanics calculations". Coord. Chem. Rev. 238–239: 267–290. doi:10.1016/S0010-8545(02)00284-9.
  39. Baum, Rudy M. (15 February 2010). "Ronald Breslow Award For Achievement In Biomimetic Chemistry Sponsored by the Ronald Breslow Award Endowment". Chemical & Engineering News. 88 (7): 61. Retrieved 26 May 2017.
  40. ^ Baum, Rudy (24 December 1990). ""Ferric wheel" molecule characterized at MIT". Chemical & Engineering News. 68 (52): 22. doi:10.1021/cen-v068n052.p022.
  41. Kovac, Jeffrey; Weisberg, Michael, eds. (2012). Roald Hoffmann on the philosophy, art, and science of chemistry. New York: Oxford University Press. pp. 133–137. ISBN 978-0199755905. Retrieved 26 May 2017.
  42. Taft, Kingsley L.; Lippard, Stephen J. (December 1990). "Synthesis and structure of 10: a molecular ferric wheel". Journal of the American Chemical Society. 112 (26): 9629–9630. doi:10.1021/ja00182a027.
  43. Taft, Kingsley L.; Delfs, Christopher D.; Papaefthymiou, Georgia C.; Foner, Simon; Gatteschi, Dante; Lippard, Stephen J. (February 1994). "10, a Molecular Ferric Wheel". Journal of the American Chemical Society. 116 (3): 823–832. doi:10.1021/ja00082a001.
  44. Stover, Dawn (May 1991). "Science Newsfront: Ferric Wheel". Popular Science. p. 21. Retrieved 26 May 2017.
  45. Winpenny, Richard (2012). Molecular cluster magnets. Singapore: World Scientific Publishing. pp. 192–193. ISBN 978-9814322942. Retrieved 26 May 2017.
  46. Bino, Avi; Shweky, Itzhak; Cohen, Shmuel; Bauminger, Erika R.; Lippard, Stephen J. (October 1998). "A Novel Nonairon(III) Citrate Complex: A "Ferric Triple-Decker"". Inorganic Chemistry. 37 (20): 5168–5172. doi:10.1021/ic9715658.
  47. Burdette, S. C.; Lippard, S. J. (24 March 2003). "Meeting of the minds: Metalloneurochemistry". Proceedings of the National Academy of Sciences. 100 (7): 3605–3610. doi:10.1073/pnas.0637711100. PMC 152969. PMID 12655069.
  48. Dean, Kevin M.; Qin, Yan; Palmer, Amy E. (September 2012). "Visualizing metal ions in cells: An overview of analytical techniques, approaches, and probes". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1823 (9): 1406–1415. doi:10.1016/j.bbamcr.2012.04.001. PMC 3408866. PMID 22521452.
  49. Goldberg, Jacob M.; Loas, Andrei; Lippard, Stephen J. (October 2016). "Metalloneurochemistry and the Pierian Spring: 'Shallow Draughts Intoxicate the Brain'". Israel Journal of Chemistry. 56 (9–10): 791–802. doi:10.1002/ijch.201600034. PMC 5300766. PMID 28190893.
  50. Tomczyk, Michael (2012). Nanoinnovation : What Every Manager Needs to Know. Wiley & Sons, Incorporated, John. ISBN 978-3527326723. Retrieved 24 March 2017.
  51. ^ Morris, Kathryn (21 April 2015). "BTP-277 has evolved to become PEN-221, embodying the miniaturized biologic drug conjugate targeting the somatostatin receptor, but no longer encapsulated in a nanoparticle". Tarveda. Retrieved 24 March 2017.
  52. ^ Fidler, Ben (7 January 2015). "With $21M, Retooled Blend Whips up Mini-Smart Bombs For Cancer". Xconomy. Retrieved 24 March 2017.
  53. ^ Fidler, Ben (27 January 2016). "Blend Rebrands as Tarveda, Raises $38M, and Spins Out Cancer Drug". Xconomy. Retrieved 24 March 2017.
  54. "Placon Therapeutics launches, BTP-114 IND accepted by FDA". CenterWatch. 23 March 2016. Retrieved 24 March 2017.
  55. "Four MIT professors elected to the American Philosophical Society". MIT News. 14 May 2016. Retrieved 23 March 2017.
  56. "Stephen J. Lippard". Royal Irish Academy. 19 October 2015. Retrieved 23 March 2017.
  57. "Our roots". MPI für Chemische Energiekonversion. Retrieved 24 March 2017.
  58. "As Part Of Its Major Campaign Kick-Off, Haverford College Honors Leaders In Business, Medicine, Higher Education And Community Service". Haverford College. 3 December 2000. Retrieved 6 November 2013.
  59. "MIT Reports to the President 1994-95". Massachusetts Institute of Technology. Retrieved 6 November 2013.
  60. "Bernanke, Robinson to address graduates". University of South Carolina. 1 February 2010. Retrieved 6 November 2013.
  61. "Lippard Awarded Honorary Doctorate from The Hebrew University of Jerusalem". Massachusetts Institute of Technology. 13 June 2018. Retrieved 19 July 2019.
  62. Faiz, Jonathan Faiz (18 March 2014). "Stephen Lippard Awarded the Priestley Medal". ChemistryViews. Retrieved 23 March 2017.
  63. "Pauling Award". Portland State University. 7 November 2009. Retrieved 6 November 2013.
  64. "Theodore William Richards Medal for Conspicuous Achievement in Chemistry Recipients". Northeastern Section of the American Chemical Society. Archived from the original on 5 March 2016. Retrieved 24 March 2017.
  65. "Nichols Medalists". New York Section, American Chemical Society. Retrieved 24 March 2017.
  66. "Ronald Breslow Award for Achievement in Biomimetic Chemistry". American Chemical Society. Retrieved 24 March 2017.
  67. "Alfred Bader Award in Bioinorganic or Bioorganic Chemistry". American Chemical Society. Retrieved 6 November 2013.
  68. "ACS Award in Inorganic Chemistry". American Chemical Society. Retrieved 24 March 2017.
  69. "ACS Award for Distinguished Service in the Advancement of lnorganic Chemistry". American Chemical Society. Retrieved 24 March 2017.
  70. "Stephen J. Lippard". 27 October 2014.
  71. "MIT Chemist Stephen Lippard to Receive 2016 Cotton Medal". Science Texas A&M University. 18 February 2016.
  72. Wang, Linda (9 May 2016). "Stephen Lippard named Cotton Medalist". Chemical & Engineering News. 94 Issue (19): 36. doi:10.1016/j.cej.2016.04.041.
  73. "Stephen Lippard wins 2016 Welch Award". MIT News. 13 September 2016. Retrieved 25 May 2017.
  74. "American Institute of Chemists Gold Medal". Science History Institute. 22 March 2018.
  75. ^ "Judith Ann Lippard". Cambridge Day. 9 September 2013. Retrieved 6 November 2013.

External links

United States National Medal of Science laureates
Behavioral and social science
1960s
1964
Neal Elgar Miller
1980s
1986
Herbert A. Simon
1987
Anne Anastasi
George J. Stigler
1988
Milton Friedman
1990s
1990
Leonid Hurwicz
Patrick Suppes
1991
George A. Miller
1992
Eleanor J. Gibson
1994
Robert K. Merton
1995
Roger N. Shepard
1996
Paul Samuelson
1997
William K. Estes
1998
William Julius Wilson
1999
Robert M. Solow
2000s
2000
Gary Becker
2003
R. Duncan Luce
2004
Kenneth Arrow
2005
Gordon H. Bower
2008
Michael I. Posner
2009
Mortimer Mishkin
2010s
2011
Anne Treisman
2014
Robert Axelrod
2015
Albert Bandura
2020s
2023
Huda Akil
Shelley E. Taylor
2025
Larry Bartels
Biological sciences
1960s
1963
C. B. van Niel
1964
Theodosius Dobzhansky
Marshall W. Nirenberg
1965
Francis P. Rous
George G. Simpson
Donald D. Van Slyke
1966
Edward F. Knipling
Fritz Albert Lipmann
William C. Rose
Sewall Wright
1967
Kenneth S. Cole
Harry F. Harlow
Michael Heidelberger
Alfred H. Sturtevant
1968
Horace Barker
Bernard B. Brodie
Detlev W. Bronk
Jay Lush
Burrhus Frederic Skinner
1969
Robert Huebner
Ernst Mayr
1970s
1970
Barbara McClintock
Albert B. Sabin
1973
Daniel I. Arnon
Earl W. Sutherland Jr.
1974
Britton Chance
Erwin Chargaff
James V. Neel
James Augustine Shannon
1975
Hallowell Davis
Paul Gyorgy
Sterling B. Hendricks
Orville Alvin Vogel
1976
Roger Guillemin
Keith Roberts Porter
Efraim Racker
E. O. Wilson
1979
Robert H. Burris
Elizabeth C. Crosby
Arthur Kornberg
Severo Ochoa
Earl Reece Stadtman
George Ledyard Stebbins
Paul Alfred Weiss
1980s
1981
Philip Handler
1982
Seymour Benzer
Glenn W. Burton
Mildred Cohn
1983
Howard L. Bachrach
Paul Berg
Wendell L. Roelofs
Berta Scharrer
1986
Stanley Cohen
Donald A. Henderson
Vernon B. Mountcastle
George Emil Palade
Joan A. Steitz
1987
Michael E. DeBakey
Theodor O. Diener
Harry Eagle
Har Gobind Khorana
Rita Levi-Montalcini
1988
Michael S. Brown
Stanley Norman Cohen
Joseph L. Goldstein
Maurice R. Hilleman
Eric R. Kandel
Rosalyn Sussman Yalow
1989
Katherine Esau
Viktor Hamburger
Philip Leder
Joshua Lederberg
Roger W. Sperry
Harland G. Wood
1990s
1990
Baruj Benacerraf
Herbert W. Boyer
Daniel E. Koshland Jr.
Edward B. Lewis
David G. Nathan
E. Donnall Thomas
1991
Mary Ellen Avery
G. Evelyn Hutchinson
Elvin A. Kabat
Robert W. Kates
Salvador Luria
Paul A. Marks
Folke K. Skoog
Paul C. Zamecnik
1992
Maxine Singer
Howard Martin Temin
1993
Daniel Nathans
Salome G. Waelsch
1994
Thomas Eisner
Elizabeth F. Neufeld
1995
Alexander Rich
1996
Ruth Patrick
1997
James Watson
Robert A. Weinberg
1998
Bruce Ames
Janet Rowley
1999
David Baltimore
Jared Diamond
Lynn Margulis
2000s
2000
Nancy C. Andreasen
Peter H. Raven
Carl Woese
2001
Francisco J. Ayala
George F. Bass
Mario R. Capecchi
Ann Graybiel
Gene E. Likens
Victor A. McKusick
Harold Varmus
2002
James E. Darnell
Evelyn M. Witkin
2003
J. Michael Bishop
Solomon H. Snyder
Charles Yanofsky
2004
Norman E. Borlaug
Phillip A. Sharp
Thomas E. Starzl
2005
Anthony Fauci
Torsten N. Wiesel
2006
Rita R. Colwell
Nina Fedoroff
Lubert Stryer
2007
Robert J. Lefkowitz
Bert W. O'Malley
2008
Francis S. Collins
Elaine Fuchs
J. Craig Venter
2009
Susan L. Lindquist
Stanley B. Prusiner
2010s
2010
Ralph L. Brinster
Rudolf Jaenisch
2011
Lucy Shapiro
Leroy Hood
Sallie Chisholm
2012
May Berenbaum
Bruce Alberts
2013
Rakesh K. Jain
2014
Stanley Falkow
Mary-Claire King
Simon Levin
2020s
2023
Gebisa Ejeta
Eve Marder
Gregory Petsko
Sheldon Weinbaum
2025
Bonnie Bassler
Angela Belcher
Helen Blau
Emery N. Brown
G. David Tilman
Teresa Woodruff
Chemistry
1960s
1964
Roger Adams
1980s
1982
F. Albert Cotton
Gilbert Stork
1983
Roald Hoffmann
George C. Pimentel
Richard N. Zare
1986
Harry B. Gray
Yuan Tseh Lee
Carl S. Marvel
Frank H. Westheimer
1987
William S. Johnson
Walter H. Stockmayer
Max Tishler
1988
William O. Baker
Konrad E. Bloch
Elias J. Corey
1989
Richard B. Bernstein
Melvin Calvin
Rudolph A. Marcus
Harden M. McConnell
1990s
1990
Elkan Blout
Karl Folkers
John D. Roberts
1991
Ronald Breslow
Gertrude B. Elion
Dudley R. Herschbach
Glenn T. Seaborg
1992
Howard E. Simmons Jr.
1993
Donald J. Cram
Norman Hackerman
1994
George S. Hammond
1995
Thomas Cech
Isabella L. Karle
1996
Norman Davidson
1997
Darleane C. Hoffman
Harold S. Johnston
1998
John W. Cahn
George M. Whitesides
1999
Stuart A. Rice
John Ross
Susan Solomon
2000s
2000
John D. Baldeschwieler
Ralph F. Hirschmann
2001
Ernest R. Davidson
Gábor A. Somorjai
2002
John I. Brauman
2004
Stephen J. Lippard
2005
Tobin J. Marks
2006
Marvin H. Caruthers
Peter B. Dervan
2007
Mostafa A. El-Sayed
2008
Joanna Fowler
JoAnne Stubbe
2009
Stephen J. Benkovic
Marye Anne Fox
2010s
2010
Jacqueline K. Barton
Peter J. Stang
2011
Allen J. Bard
M. Frederick Hawthorne
2012
Judith P. Klinman
Jerrold Meinwald
2013
Geraldine L. Richmond
2014
A. Paul Alivisatos
2025
R. Lawrence Edwards
Engineering sciences
1960s
1962
Theodore von Kármán
1963
Vannevar Bush
John Robinson Pierce
1964
Charles S. Draper
Othmar H. Ammann
1965
Hugh L. Dryden
Clarence L. Johnson
Warren K. Lewis
1966
Claude E. Shannon
1967
Edwin H. Land
Igor I. Sikorsky
1968
J. Presper Eckert
Nathan M. Newmark
1969
Jack St. Clair Kilby
1970s
1970
George E. Mueller
1973
Harold E. Edgerton
Richard T. Whitcomb
1974
Rudolf Kompfner
Ralph Brazelton Peck
Abel Wolman
1975
Manson Benedict
William Hayward Pickering
Frederick E. Terman
Wernher von Braun
1976
Morris Cohen
Peter C. Goldmark
Erwin Wilhelm Müller
1979
Emmett N. Leith
Raymond D. Mindlin
Robert N. Noyce
Earl R. Parker
Simon Ramo
1980s
1982
Edward H. Heinemann
Donald L. Katz
1983
Bill Hewlett
George Low
John G. Trump
1986
Hans Wolfgang Liepmann
Tung-Yen Lin
Bernard M. Oliver
1987
Robert Byron Bird
H. Bolton Seed
Ernst Weber
1988
Daniel C. Drucker
Willis M. Hawkins
George W. Housner
1989
Harry George Drickamer
Herbert E. Grier
1990s
1990
Mildred Dresselhaus
Nick Holonyak Jr.
1991
George H. Heilmeier
Luna B. Leopold
H. Guyford Stever
1992
Calvin F. Quate
John Roy Whinnery
1993
Alfred Y. Cho
1994
Ray W. Clough
1995
Hermann A. Haus
1996
James L. Flanagan
C. Kumar N. Patel
1998
Eli Ruckenstein
1999
Kenneth N. Stevens
2000s
2000
Yuan-Cheng B. Fung
2001
Andreas Acrivos
2002
Leo Beranek
2003
John M. Prausnitz
2004
Edwin N. Lightfoot
2005
Jan D. Achenbach
2006
Robert S. Langer
2007
David J. Wineland
2008
Rudolf E. Kálmán
2009
Amnon Yariv
2010s
2010
Shu Chien
2011
John B. Goodenough
2012
Thomas Kailath
2020s
2023
Subra Suresh
2025
John Dabiri
Mathematical, statistical, and computer sciences
1960s
1963
Norbert Wiener
1964
Solomon Lefschetz
H. Marston Morse
1965
Oscar Zariski
1966
John Milnor
1967
Paul Cohen
1968
Jerzy Neyman
1969
William Feller
1970s
1970
Richard Brauer
1973
John Tukey
1974
Kurt Gödel
1975
John W. Backus
Shiing-Shen Chern
George Dantzig
1976
Kurt Otto Friedrichs
Hassler Whitney
1979
Joseph L. Doob
Donald E. Knuth
1980s
1982
Marshall H. Stone
1983
Herman Goldstine
Isadore Singer
1986
Peter Lax
Antoni Zygmund
1987
Raoul Bott
Michael Freedman
1988
Ralph E. Gomory
Joseph B. Keller
1989
Samuel Karlin
Saunders Mac Lane
Donald C. Spencer
1990s
1990
George F. Carrier
Stephen Cole Kleene
John McCarthy
1991
Alberto Calderón
1992
Allen Newell
1993
Martin David Kruskal
1994
John Cocke
1995
Louis Nirenberg
1996
Richard Karp
Stephen Smale
1997
Shing-Tung Yau
1998
Cathleen Synge Morawetz
1999
Felix Browder
Ronald R. Coifman
2000s
2000
John Griggs Thompson
Karen Uhlenbeck
2001
Calyampudi R. Rao
Elias M. Stein
2002
James G. Glimm
2003
Carl R. de Boor
2004
Dennis P. Sullivan
2005
Bradley Efron
2006
Hyman Bass
2007
Leonard Kleinrock
Andrew J. Viterbi
2009
David B. Mumford
2010s
2010
Richard A. Tapia
S. R. Srinivasa Varadhan
2011
Solomon W. Golomb
Barry Mazur
2012
Alexandre Chorin
David Blackwell
2013
Michael Artin
2020s
2025
Ingrid Daubechies
Cynthia Dwork
Physical sciences
1960s
1963
Luis W. Alvarez
1964
Julian Schwinger
Harold Urey
Robert Burns Woodward
1965
John Bardeen
Peter Debye
Leon M. Lederman
William Rubey
1966
Jacob Bjerknes
Subrahmanyan Chandrasekhar
Henry Eyring
John H. Van Vleck
Vladimir K. Zworykin
1967
Jesse Beams
Francis Birch
Gregory Breit
Louis Hammett
George Kistiakowsky
1968
Paul Bartlett
Herbert Friedman
Lars Onsager
Eugene Wigner
1969
Herbert C. Brown
Wolfgang Panofsky
1970s
1970
Robert H. Dicke
Allan R. Sandage
John C. Slater
John A. Wheeler
Saul Winstein
1973
Carl Djerassi
Maurice Ewing
Arie Jan Haagen-Smit
Vladimir Haensel
Frederick Seitz
Robert Rathbun Wilson
1974
Nicolaas Bloembergen
Paul Flory
William Alfred Fowler
Linus Carl Pauling
Kenneth Sanborn Pitzer
1975
Hans A. Bethe
Joseph O. Hirschfelder
Lewis Sarett
Edgar Bright Wilson
Chien-Shiung Wu
1976
Samuel Goudsmit
Herbert S. Gutowsky
Frederick Rossini
Verner Suomi
Henry Taube
George Uhlenbeck
1979
Richard P. Feynman
Herman Mark
Edward M. Purcell
John Sinfelt
Lyman Spitzer
Victor F. Weisskopf
1980s
1982
Philip W. Anderson
Yoichiro Nambu
Edward Teller
Charles H. Townes
1983
E. Margaret Burbidge
Maurice Goldhaber
Helmut Landsberg
Walter Munk
Frederick Reines
Bruno B. Rossi
J. Robert Schrieffer
1986
Solomon J. Buchsbaum
H. Richard Crane
Herman Feshbach
Robert Hofstadter
Chen-Ning Yang
1987
Philip Abelson
Walter Elsasser
Paul C. Lauterbur
George Pake
James A. Van Allen
1988
D. Allan Bromley
Paul Ching-Wu Chu
Walter Kohn
Norman Foster Ramsey Jr.
Jack Steinberger
1989
Arnold O. Beckman
Eugene Parker
Robert Sharp
Henry Stommel
1990s
1990
Allan M. Cormack
Edwin M. McMillan
Robert Pound
Roger Revelle
1991
Arthur L. Schawlow
Ed Stone
Steven Weinberg
1992
Eugene M. Shoemaker
1993
Val Fitch
Vera Rubin
1994
Albert Overhauser
Frank Press
1995
Hans Dehmelt
Peter Goldreich
1996
Wallace S. Broecker
1997
Marshall Rosenbluth
Martin Schwarzschild
George Wetherill
1998
Don L. Anderson
John N. Bahcall
1999
James Cronin
Leo Kadanoff
2000s
2000
Willis E. Lamb
Jeremiah P. Ostriker
Gilbert F. White
2001
Marvin L. Cohen
Raymond Davis Jr.
Charles Keeling
2002
Richard Garwin
W. Jason Morgan
Edward Witten
2003
G. Brent Dalrymple
Riccardo Giacconi
2004
Robert N. Clayton
2005
Ralph A. Alpher
Lonnie Thompson
2006
Daniel Kleppner
2007
Fay Ajzenberg-Selove
Charles P. Slichter
2008
Berni Alder
James E. Gunn
2009
Yakir Aharonov
Esther M. Conwell
Warren M. Washington
2010s
2011
Sidney Drell
Sandra Faber
Sylvester James Gates
2012
Burton Richter
Sean C. Solomon
2014
Shirley Ann Jackson
2020s
2023
Barry Barish
Myriam Sarachik
2025
Richard Alley
Wendy Freedman
Keivan Stassun
Categories:
Stephen J. Lippard Add topic