Misplaced Pages

Stress granule

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Stress granules) Cytoplasmic biomolecular condensates of proteins and RNA occurring in cells under stress

Stress granule dynamics

In the cellular biology, stress granules are biomolecular condensates in the cytosol composed of proteins and RNA that assemble into 0.1–2 μm membraneless organelles when the cell is under stress. The mRNA molecules found in stress granules are stalled translation pre-initiation complexes associated with 40S ribosomal subunits, translation initiation factors, poly(A)+ mRNA and RNA-binding proteins (RBPs). While they are membraneless organelles, stress granules have been proposed to be associated with the endoplasmatic reticulum. There are also nuclear stress granules. This article is about the cytosolic variety.

Proposed functions

The function of stress granules remains largely unknown. Stress granules have long been proposed to have a function to protect RNA from harmful conditions, thus their appearance under stress. The accumulation of RNA into dense globules could keep them from reacting with harmful chemicals and safeguard the information coded in their RNA sequence.

Stress granules might also function as a decision point for untranslated mRNA. Molecules can go down one of three paths: further storage, degradation, or re-initiation of translation. Conversely, it has also been argued that stress granules are not important sites for mRNA storage nor do they serve as an intermediate location for mRNA in transit between a state of storage and a state of degradation.

Efforts to identify all RNA within stress granules (the stress granule transcriptome) in an unbiased way by sequencing RNA from biochemically purified stress granule "cores" have shown that RNA are not recruited to stress granules in a sequence-specific manner, but rather generically, with longer and/or less-optimally translated transcripts being enriched. These data imply that the stress granule transcriptome is influenced by the valency of RNA (for proteins or other RNA) and by the rates of RNA run-off from polysomes. The latter is further supported by recent single molecule imaging studies. Furthermore, it was estimated that only about 15% of the total mRNA in the cell is localized to stress granules, suggesting that stress granules only influence a minority of mRNA in the cell and may not be as important for mRNA processing as previously thought. That said, these studies represent only a snapshot in time, and it is likely that a larger fraction of mRNA are at one point stored in stress granules due to those RNA transiting in and out.

The stress proteins that are the main component of stress granules in plant cells are molecular chaperones that sequester, protect, and possibly repair proteins that unfold during heat and other types of stress. Therefore, any association of mRNA with stress granules may simply be a side effect of the association of partially unfolded RNA-binding proteins with stress granules, similar to the association of mRNA with proteasomes.

Formation

Environmental stressors trigger cellular signaling, eventually leading to the formation of stress granules. In vitro, these stressors can include heat, cold, oxidative stress (sodium arsenite), endoplasmic reticulum stress (thapsigargin), proteasome inhibition (MG132), hyperosmotic stress, ultraviolet radiation, inhibition of eIF4A (pateamine A, hippuristanol, or RocA), nitric oxide accumulation after treatment with 3-morpholinosydnonimine (SIN-1), perturbation of pre-mRNA splicing, and other stressors, like puromycin, which result in disassembled polysomes. Many of these stressors result in the activation of particular stress-associated kinases (HRI, PERK, PKR, and GCN2), translational inhibition and stress granule formation. Stress granules will also form upon Gαq activation in a mechanism that involves the release of stress granule associated proteins from the cytosolic population of the Gαq effector phospholipase Cβ.

Stress granule formation is often downstream of the stress-activated phosphorylation of eukaryotic translation initiation factor eIF2α; this does not hold true for all types of stressors that induce stress granules, for instance, eIF4A inhibition. Further downstream, prion-like aggregation of the protein TIA-1 promotes the formation of stress granules. The term prion-like is used because aggregation of TIA-1 is concentration dependent, inhibited by chaperones, and because the aggregates are resistant to proteases. It has also been proposed that microtubules play a role in the formation of stress granules, perhaps by transporting granule components. This hypothesis is based on the fact that disruption of microtubules with the chemical nocodazole blocks the appearance of the granules. Furthermore, many signaling molecules have been shown to regulate the formation or dynamics of stress granules; these include the "master energy sensor" AMP-activated protein kinase (AMPK), the O-GlcNAc transferase enzyme (OGT), and the pro-apoptotic kinase ROCK1.

Potential roles of RNA-RNA interactions

RNA phase transitions driven in part by intermolecular RNA-RNA interactions may play a role in stress granule formation. Similar to intrinsically disordered proteins, total RNA extracts are capable of undergoing phase separation in physiological conditions in vitro. RNA-seq analyses demonstrate that these assemblies share a largely overlapping transcriptome with stress granules, with RNA enrichment in both being predominately based on the length of the RNA. Further, stress granules contain many RNA helicases, including the DEAD/H-box helicases Ded1p/DDX3, eIF4A1, and RHAU. In yeast, catalytic ded1 mutant alleles give rise to constitutive stress granules ATPase-deficient DDX3X (the mammalian homolog of Ded1) mutant alleles are found in pediatric medulloblastoma, and these coincide with constitutive granular assemblies in patient cells. These mutant DDX3 proteins promote stress granule assembly in HeLa cells. In mammalian cells, RHAU mutants lead to reduced stress granule dynamics. Thus, some hypothesize that RNA aggregation facilitated by intermolecular RNA-RNA interactions plays a role in stress granule formation, and that this role may be regulated by RNA helicases. There is also evidence that RNA within stress granules is more compacted, compared to RNA in the cytoplasm, and that the RNA is found to be post-translationally modified by N6-methyladenosine (mA) on its 5' ends or RNA acetylation ac4C. Recent work has shown that the highly abundant translation initiation factor and DEAD-box protein eIF4A limits stress granule formation. It does so through its ability to bind ATP and RNA, acting analogously to protein chaperones like Hsp70.

Connection with processing bodies

Stress granules and P-bodies (processing bodies) share RNA and protein components, both appear under stress, and can physically associate with one another. As of 2018, of the ~660 proteins identified as localizing to stress granules, ~11% also have been identified as processing body-localized proteins (see below). The protein G3BP1 is necessary for the proper docking of processing bodies and stress granules to each other, which may be important for the preservation of polyadenylated mRNA.

Although some protein components are shared between stress granules and processing bodies, the majority of proteins in either structure are uniquely localized to either structure. While both stress granules and P-bodies are associated with mRNA, processing bodies have been long proposed to be sites of mRNA degradation because they contain enzymes such as DCP1/2 and XRN1 that are known to degrade mRNA. However, others have demonstrated that mRNA associated with processing bodies are largely translationally repressed but not degraded. It has also been proposed that mRNA selected for degradation are passed from stress granules to processing bodies, though there is also data suggesting that processing bodies precede and promote stress granule formation.

Protein composition of stress granules

The complete proteome of stress granules is still unknown, but efforts have been made to catalog all of the proteins that have been experimentally demonstrated to transit into stress granules. Importantly, different stressors can result in stress granules with different protein components. Many stress granule-associated proteins have been identified by transiently stressing cultured cells and utilizing microscopy to detect the localization of a protein of interest either by expressing that protein fused to a fluorescent protein (i.e. green fluorescent protein (GFP)) and/or by fixing cells and using antibodies to detect the protein of interest along with known protein markers of stress granules (immunocytochemistry).

In 2016, stress granule "cores" were experimentally identified and then biochemically purified for the first time. Proteins in the cores were identified in an unbiased manner using mass spectrometry. This technical advance lead to the identification of hundreds of new stress granule-localized proteins.

The proteome of stress granules has also been experimentally determined by using two slightly different proximity labeling approaches. One of these proximity labeling approaches is the ascorbate peroxidase (APEX) method, in which cells are engineered to express a known stress granule protein, such as G3BP1, fused to a modified ascorbate peroxidase enzyme called APEX. Upon incubating the cells in biotin and treating the cells with hydrogen peroxide, the APEX enzyme will be briefly activated to biotinylate all proteins in close proximity to the protein of interest, in this case G3BP1 within stress granules. Proteins that are biotinylated can then be isolated via streptavidin and identified using mass spectrometry. The APEX technique was used to identify ~260 stress granule-associated proteins in several cell types, including neurons, and with various stressors. Of the 260 proteins identified in this study, ~143 had not previously been demonstrated to be stress granule-associated.

Another proximity labeling method used to determine the proteome of stress granules is BioID. BioID is similar to the APEX approach, in that a biotinylating protein (BirA* instead of APEX) was expressed in cells as a fusion protein with several known stress granule-associated proteins. Proteins in close proximity to BirA* will be biotinylated and are then identified by mass spectrometry. Youn et al. used this method to identify/predict 138 proteins as stress granule-associated and 42 as processing body-associated.

A curated database of stress granule-associated proteins can be found here .

The following is a list of proteins that have been demonstrated to localize to stress granules (compiled from ):

Gene ID Protein Name Description References Also found in processing bodies?
ABCF1 ABCF1 ATP Binding Cassette Subfamily F Member 1
ABRACL ABRACL ABRA C-Terminal Like
ACAP1 ACAP1 ArfGAP With Coiled-Coil, Ankyrin Repeat And PH Domains 1
ACBD5 ACBD5 Acyl-CoA Binding Domain Containing 5
ACTBL2 ACTBL2 Beta-actin-like protein 2 yes
ACTR1A ACTR1A Alpha-centractin
ACTR1B ACTR1B Beta-centractin
ADAR ADAR1 Adenosine Deaminase, RNA Specific
ADD1 Adducin 1 Adducin 1
AGO1 Argonaute 1/EIF2C1 Argonaute 1, RISC Catalytic Component yes
AGO2 Argonaute 2 Argonaute 2, RISC Catalytic Component yes
AKAP8 AKAP8 A-Kinase Anchoring Protein 8
AKAP9 AKAP350 A-Kinase Anchoring Protein 9
AKAP13 AKAP13/LBC A-Kinase Anchoring Protein 13
ALDH18A1 ALDH18A1 Delta-1-pyrroline-5-carboxylate synthase
ALG13 ALG13 ALG13, UDP-N-Acetylglucosaminyltransferase Subunit
ALPK2 ALPK2/HAK Alpha Kinase 2
AMOTL2 AMOTL2/LCCP Angiomotin Like 2
ANKHD1 ANKHD1 Ankyrin Repeat and KH Domain Containing 1 yes
ANKRD17 ANKRD17/MASK2/GTAR Ankyrin Repeat Domain 17 yes
ANG Angiogenin Angiogenin
ANP32E ANP32E Acidic leucine-rich nuclear phosphoprotein 32 family member E
ANXA1 ANXA1 Annexin A1
ANXA11 ANXA11 Annexin 11
ANXA6 ANXA6 Annexin 6
ANXA7 ANXA7 Annexin 7
APEX1 APEX1 DNA-(apurinic or apyrimidinic site) lyase
APOBEC3C APOBEC3C Apolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3C
APOBEC3G APOBEC3G Apolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3G
ARID2 ARID2/BAF200 AT-Rich Interaction Domain 2
ARPC1B ARPC1B Actin-related protein 2/3 complex subunit 1B
AHSA1 AHA1 Activator Of HSP90 ATPase Activity 1
AQR AQR/IBP160 Aquarius Intron-Binding Spliceosomal Factor
ARMC6 ARMC6 Armadillo Repeat Containing 6
ASCC1 ASCC1 Activating Signal Cointegrator 1 Complex Subunit 1
ASCC3 ASCC3 Activating Signal Cointegrator 1 Complex Subunit 3
ATAD2 ATAD2 ATPase family AAA domain-containing protein 2
ATAD3A ATAD3A ATPase family AAA domain-containing protein 3A yes
ATG3 ATG3 Autophagy Related 3
ATP5A1 ATP5A1 ATP synthase subunit alpha, mitochondrial
ATP6V1G1 ATP6V1G1/ATP6G ATPase H+ Transporting V1 Subunit G1
ATXN2 Ataxin 2 Ataxin 2
ATXN2L Ataxin-2 like Ataxin 2 Like
BAG3 BAG3 BAG family molecular chaperone regulator 3
BANF1 BANF1 Barrier-to-autointegration factor
BAZ1B BAZ1B Bromodomain Adjacent To Zinc Finger Domain 1B
BAZ2A BAZ2A Bromodomain Adjacent To Zinc Finger Domain 2A
BCCIP BCCIP BRCA2 And CDKN1A Interacting Protein
BCLAF1 BCLAF1 BCL2 Associated Transcription Factor 1
BICC1 BICC1 BicC Family RNA Binding Protein 1
BIRC2 BIRC2/CIAP1 Baculoviral IAP Repeat Containing 2
BLM BLM BLM RecQ Like Helicase
BOD1L1 BOD1L1/FAM44A Biorientation Of Chromosomes In Cell Division 1 Like 1
BOLL BOULE Boule Homolog, RNA Binding Protein
BRAT1 BRAT1 BRCA1-associated ATM activator 1
BRF1 BRF1 BRF1, RNA Polymerase III Transcription Initiation Factor Subunit
BTG3 BTG3 BTG Anti-Proliferation Factor 3 yes
C9orf72 C9orf72 Uncharacterized protein C9orf72
C15orf52 C15orf52 Uncharacterized protein C15orf52
C20orf27 C20orf72 Chromosome 20 Open Reading Frame 27
C2CD3 C2CD3 C2 Calcium Dependent Domain Containing 3
CALML5 CALML5 Calmodulin-like protein 5
CALR Calreticulin/CRT Calreticulin
CAMSAP1 CAMSAP1 Calmodulin Regulated Spectrin Associated Protein 1
CAP1 CAP1 Adenylyl cyclase-associated protein 1
CAPRIN1 Caprin-1 Cell Cycle Associated Protein 1
CAPZA2 CAPZA2 F-actin-capping protein subunit alpha-2
CAPZB CAPZB Capping Actin Protein Of Muscle Z-Line Subunit Beta
CARHSP1 CARHSP1 Calcium-regulated heat stable protein 1
CASC3 MLN51/BTZ Cancer Susceptibility 3
CBFB CBFB Core-binding factor subunit beta
CBS CBS Cystathionine Beta-Synthase
CBX1 CBX1 Chromobox protein homolog 1
CBX3 CBX3 Chromobox protein homolog 3
CCAR1 CARP-1 Cell Division Cycle and Apoptosis Regulator 1
CCDC9 CCDC9 Coiled-Coil Domain Containing 9
CCDC9B CCDC9B Coiled-Coil Domain Containing 9B
CCDC124 CCDC124 Coiled-Coil Domain Containing 124
CCDC85C CCDC85C Coiled-Coil Domain Containing 85C
CCT3 CCT3 T-complex protein 1 subunit gamma
CCT6A CCT6A T-complex protein 1 subunit zeta
CDC20 CDC20 Cell Division Cycle 20
CDC37 CDC37 Cell Division Cycle 37
CDC5L CDC5L Cell division cycle 5-like protein
CDC73 CDC73 Parafibromin
CDK1 CDK1 Cyclin-dependent kinase 1
CDK2 CDK2 Cyclin Dependent Kinase 2
CDV3 CDV3 CDV3 Homolog
CELF1 CUGBP1 CUGBP Elav-Like Family Member 1
CELF2 CUGBP2/BRUNOL3 CUGBP Elav-Like Family Member 2
CELF3 CUGBP3/BRUNOL1 CUGBP Elav-Like Family Member 3
CENPB CENPB Major centromere autoantigen B
CENPF CENPF Centromere Protein F
CEP78 CEP78/CRDHL Centrosomal Protein 78
CEP85 CEP85/CCDC21 Centrosomal Protein 78
CERKL Ceramide-Kinase Like Ceramide Kinase Like
CFL1 Cofilin-1 Cofilin-1
CHCHD3 CHCHD3 Coiled-coil-helix-coiled-coil-helix domain-containing protein 3, mitochondrial
CHORDC1 CHORDC1/CHP1 Cysteine and histidine-rich domain-containing protein 1
CIRBP CIRP Cold Inducible RNA Binding Protein
CIT CIT Citron Rho-interacting kinase
CLIC4 CLIC4 Chloride intracellular channel protein 4
CLNS1A CLNS1A Chloride Nucleotide-Sensitive Channel 1A
CLPP CLPP Caseinolytic Mitochondrial Matrix Peptidase Proteolytic Subunit
CNBP ZNF9 CCHC-Type Zinc Finger Nucleic Acid Binding Protein
CNN3 CNN3 Calponin-3
CNOT1 CNOT1/CCR4 CCR4-Not Transcription Complex Subunit 1 yes
CNOT10 CNOT10 CCR4-Not Transcription Complex Subunit 10 yes
CNOT11 CNOT11 CCR4-Not Transcription Complex Subunit 11 yes
CNOT2 CNOT2 CCR4-Not Transcription Complex Subunit 2 yes
CNOT3 CNOT3 CCR4-Not Transcription Complex Subunit 3 yes
CNOT4 CNOT4 CCR4-Not Transcription Complex Subunit 4 yes
CNOT6 CNOT6 CCR4-Not Transcription Complex Subunit 6 yes
CNOT6L CNOT6L CCR4-Not Transcription Complex Subunit 6L yes
CNOT7 CNOT7 CCR4-Not Transcription Complex Subunit 7 yes
CNOT8 CNOT8 CCR4-Not Transcription Complex Subunit 8 yes
CNOT9 CNOT9 CCR4-Not Transcription Complex Subunit 9
CORO1B CORO1B Coronin-1B
CPB2 Carboxypeptidase B2 Carboxypeptidase B2
CPEB1 CPEB Cytoplasmic Polyadenylation Element Binding Protein 1
CPEB4 CPEB4 Cytoplasmic Polyadenylation Element Binding Protein 4 yes
CPSF3 CPSF3 Cleavage and polyadenylation specificity factor subunit 3
CPSF6 CPSF6 Cleavage and polyadenylation specificity factor subunit 6
CPSF7 CPSF7 Cleavage and polyadenylation specificity factor subunit 7
CPVL CPVL Carboxypeptidase, Vitellogenic Like yes
CRKL CRKL CRK Like Proto-Oncogene, Adaptor Protein
CROCC CROCC Ciliary Rootlet Coiled-Coil, Rootletin
CRYAB CRYAB Alpha-crystallin B chain
CRYBG1 CRYBG1 Crystallin Beta-Gamma Domain Containing 1
CSDE1 CSDE1 Cold shock domain-containing protein E1
CSE1L CSE1L/XPO2/Exportin-2 Exportin-2
CSNK2A1 Casein Kinase 2 alpha Casein Kinase 2 Alpha 1
CSTB Cystatin B Cystatin B
CSTF1 CSTF1 Cleavage stimulation factor subunit 1
CTNNA2 CTNNA2 Catenin alpha-2
CTNND1 CTNND1 Catenin delta-1
CTTNBP2NL CTTNBP2NL CTTNBP2 N-terminal-like protein
CWC22 CWC22 Pre-mRNA-splicing factor CWC22 homolog
DAZAP1 DAZAP1 DAZ-associated protein 1
DAZAP2 PRTB DAZ Associated Protein 2
DAZL DAZL1 Deleted In Azoospermia Like
DCD DCD Dermcidin
DCP1A DCP1a Decapping mRNA 1a yes
DCP1B DCP1b Decapping mRNA 1b yes
DCP2 DCP2 Decapping mRNA 2
DCTN1 DCTN1 Dynactin subunit 1
DDX1 DEAD box protein 1 DEAD-Box Helicase 1
DDX11 DEAD box protein 11 DEAD-Box Helicase 11
DDX19A DDX19A ATP-dependent RNA helicase DDX19A
DDX21 DDX21 Nucleolar RNA helicase 2 yes
DDX3 DEAD box protein 3 DEAD-Box Helicase 3
DDX3X DDX3X DEAD-Box Helicase 3, X-Linked
DDX3Y DDX3Y DEAD-Box Helicase 3, Y-Linked
DDX31 DDX31 DEAD-Box Helicase 31
DDX47 DDX47 Probable ATP-dependent RNA helicase DDX47
DDX50 DDX50 ATP-dependent RNA helicase DDX50 yes
DDX58 RIG-I DExD/H-Box Helicase 58
DDX6 DEAD box protein 6 DEAD-Box Helicase 6 yes
DERA DERA Deoxyribose-Phosphate Aldolase
DGCR8 DGCR8 DGCR8 Microprocessor Complex Subunit
DHX30 DHX30 Putative ATP-dependent RNA helicase DHX30 yes
DHX33 DHX33 DEAH-Box Helicase 33
DHX36 RHAU DEAH-Box Helicase 36
DHX57 DHX57 DExH-Box Helicase 57
DHX58 LGP2 DExH-Box Helicase 58
DIDO1 DIDO1 Death Inducer-Obliterator 1
DIS3L2 DIS3L2/FAM3A DIS3 Like 3'-5' Exoribonuclease 2
DISC1 Disrupted in Schizophrenia 1 Disrupted In Schizophrenia 1
DKC1 DKC1 dyskerin; H/ACA ribonucleoprotein complex subunit 4
DNAI1 Axonemal Dynein Intermediate Chain 1 Dynein Axonemal Intermediate Chain 1
DNAJA1 DNAJA1 DnaJ homolog subfamily A member 1
DNAJC8 DNAJC8 DnaJ homolog subfamily C member 8
DOCK4 DOCK4 Dedicator Of Cytokinesis 4
DPYSL2 DPYSL2 Dihydropyrimidinase-related protein 2
DPYSL3 DPYSL3 Dihydropyrimidinase-related protein 3
DROSHA DROSHA Drosha Ribonuclease III
DSP DSP Desmoplakin
DST DST Dystonin
DSTN DSTN Destrin
DTL DTL Denticleless E3 Ubiquitin Protein Ligase Homolog
DTX3L DTX3L E3 ubiquitin-protein ligase DTX3L
DUSP12 DUSP12/YVH1 Dual Specificity Phosphatase 12
DYNC1H1 Cytoplasmic Dynein Heavy Chain 1 Dynein Cytoplasmic 1 Heavy Chain 1
DYNLL1 Cytoplasmic Dynein Light Polypeptide Dynein Light Chain LC8-Type 1
DYNLL2 DYNLL2 Dynein light chain 2, cytoplasmic
DYRK3 DYRK3 Dual Specificity Tyrosine Phosphorylation Regulated Kinase 3
DZIP1 DZIP1 DAZ Interacting Zinc Finger Protein 1
DZIP3 DZIP3 DAZ Interacting Zinc Finger Protein 3
EDC3 EDC3 Enhancer of mRNA Decapping 3 yes
EDC4 EDC4 Enhancer of mRNA-Decapping protein 4 yes
EIF1 EIF1 Eukaryotic Translation Initiation Factor 1
EIF2A EIF2A Eukaryotic Translation Initiation Factor 2A
EIF2AK2 Protein Kinase R/PKR Eukaryotic Translation Initiation Factor 2 Alpha Kinase 2
EIF2B1-5 EIF2B Eukaryotic Translation Initiation Factor 2B
EIF2S1 EIF2A subunit 1 Eukaryotic Translation Initiation Factor 2 Subunit Alpha
EIF2S2 EIF2A subunit 2 Eukaryotic Translation Initiation Factor 2 Subunit Beta
EIF3A EIF3A Eukaryotic Translation Initiation Factor 3 Subunit A
EIF3B EIF3B Eukaryotic Translation Initiation Factor 3 Subunit B
EIF3C EIF3C Eukaryotic Translation Initiation Factor 3 Subunit C
EIF3D EIF3D Eukaryotic translation initiation factor 3 subunit D
EIF3E EIF3E Eukaryotic translation initiation factor 3 subunit E
EIF3F EIF3F Eukaryotic translation initiation factor 3 subunit F
EIF3G EIF3G Eukaryotic translation initiation factor 3 subunit G
EIF3H EIF3H Eukaryotic translation initiation factor 3 subunit H
EIF3I EIF3I Eukaryotic translation initiation factor 3 subunit I
EIF3J EIF3J Eukaryotic translation initiation factor 3 subunit J
EIF3K EIF3K Eukaryotic translation initiation factor 3 subunit K
EIF3L EIF3L Eukaryotic translation initiation factor 3 subunit L
EIF3M EIF3M Eukaryotic translation initiation factor 3 subunit M
EIF4A1 EIF4A1 Eukaryotic Translation Initiation Factor 4A1
EIF4A2 EIF4A2 Eukaryotic Translation Initiation Factor 4A2
EIF4A3 EIF4A3 Eukaryotic Translation Initiation Factor 4A3
EIF4B EIF4B Eukaryotic translation Initiation factor 4B
EIF4E EIF4E Eukaryotic Translation Initiation Factor 4E yes
EIF4E2 EIF4E2 Eukaryotic Translation Initiation Factor 4E Family Member 2 yes
EIF4E3 EIF4E3 Eukaryotic Translation Initiation Factor 4E Family Member 3
EIF4ENIF1 EIF4ENIF1 Eukaryotic Translation Initiation Factor 4E Nuclear Import Factor 1 yes
EIF4G1 EIF4G1 Eukaryotic Translation Initiation Factor 4G1
EIF4G2 EIF4G2 Eukaryotic Translation Initiation Factor 4G2
EIF4G3 EIF4G3 Eukaryotic Translation Initiation Factor 4G3
EIF4H EIF4H Eukaryotic translation Initiation factor 4H
EIF5A EIF5A Eukaryotic Translation Initiation Factor 5A
ELAVL1 HuR ELAV Like RNA Binding Protein 1 yes
ELAVL2 ELAVL2 ELAV-like protein 2 yes
ELAVL3 ELAVL3/HuC ELAV Like RNA Binding Protein 3
ELAVL4 HuD ELAV Like RNA Binding Protein 4
ENC1 ENC1 Ectodermal-Neural Cortex 1
ENDOV EndoV Endonuclease V
ENTPD1 ENTPD1 Ectonucleoside Triphosphate Diphosphohydrolase 1
EP400 EP400 E1A Binding Protein P400
EPPK1 EPPK1 Epiplakin
ETF1 ETF1 Eukaryotic peptide chain release factor subunit 1
EWSR1 EWSR1 EWS RNA Binding Protein 1
FABP5 FABP5 Fatty Acid Binding Protein 5
FAM120A FAM120A/OSSA Constitutive coactivator of PPAR-gamma-like protein 1 yes
FAM120C FAM120C Family With Sequence Similarity 120C
FAM168A FAM168A Family With Sequence Similarity 168 Member A
FAM168B FAM168B/MANI Family With Sequence Similarity 168 Member B
FAM83H FAM83H Family With Sequence Similarity 83 Member H
FAM98A FAM98A Family With Sequence Similarity 98 Member A
FAM98C FAM98C Family With Sequence Similarity 98 Member C
FASTK FAST Fas Activated Serine/Threonine Kinase yes
FBL FBL rRNA 2-O-methyltransferase fibrillarin
FBRSL1 Fibrosin Like 1 Fibrosin Like 1
FHL1 FHL1 Four and a half LIM domains protein 1
FKBP1A FKBP1A FKBP Prolyl Isomerase 1A
FLNB FLNB Filamin-B
FMR1 FMRP Fragile X Mental Retardation 1
FNDC3B FNDC3B Fibronectin type III domain-containing protein 3B
FSCN1 FSCN1 Fascin
FTSJ3 FTSJ3 pre-rRNA processing protein FTSJ3
FUBP1 FUBP1 Far Upstream Element Binding Protein 1
FUBP3 FUBP3 Far upstream element-binding protein 3
FUS FUS FUS RNA Binding Protein
FXR1 FXR1 FMR1 Autosomal Homolog 1
FXR2 FXR2 FMR1 Autosomal Homolog 2
G3BP1 G3BP1 G3BP Stress Granule Assembly Factor 1
G3BP2 G3BP2 G3BP Stress Granule Assembly Factor 2
GABARAPL2 GABARAPL2/GEF2/ATG8 GABA Type A Receptor Associated Protein Like 2
GAK GAK Cyclin G Associated Kinase
GAR1 GAR1 H/ACA Ribonucleoprotein Complex Subunit 1
GCA Grancalcin Grancalcin
GEMIN5 Gemin-5 Gem Nuclear Organelle Associated Protein 5
GFPT1 GFPT1 Glutamine—fructose-6-phosphate aminotransferase 1
GIGYF1 GIGYF1/PERQ1 GRB10 Interacting GYF Protein 1
GIGYF2 GIGYF2/TNRC15/PARK11/PERQ2 GRB10 Interacting GYF Protein 2 yes
GLE1 GLE1 GLE1, RNA Export Mediator
GLO1 Glyoxalase Glyoxalase
GLRX3 GLRX3/Glutaredoxin 3/TNLX2 Glutaredoxin 3
GLUD1 GLUD1 Glutamate Dehydrogenase 1
GNB2 GNB2 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2
GOLGA2 Golgin A2 Golgin A2
GPAT3 GPAT3 Glycerol-3-Phosphate Acyltransferase 3
GRB2 GRB2/ASH Growth Factor Receptor Bound Protein 2
GRB7 GRB7 Growth Factor Receptor Bound Protein 7
GRSF1 GRSF1 G-Rich RNA Sequence Binding Factor 1
GSPT1 eRF3 G1 To S Phase Transition 1
GTF2I GTF2I General Transcription Factor IIi
GTF3C1 GTF3C1 General Transcription Factor IIIC Subunit 1
GTF3C4 GTF3C4 General Transcription Factor IIIC Subunit 4
H1F0 H1F0 Histone H1.0
H1FX H1FX Histone H1x
H2AFV H2AFV Histone H2A.V
HABP4 Ki-1/57 Hyaluronan Binding Protein 4
HDAC6 HDAC6 Histone Deacetylase 6
HDLBP HDL-Binding Protein/VGL/Vigilin High Density Lipoprotein Binding Protein
HELZ HELZ Probable helicase with zinc finger domain yes
HELZ2 HELZ2 Helicase with zinc finger domain 2
HMGA1 HMGA1 High mobility group protein HMG-I/HMG-Y
HMGB3 HMGB3 High mobility group protein B3
HMGN1 HMGN1 Non-histone chromosomal protein HMG-14
HNRNPA1 HnRNPA1 Heterogeneous Nuclear Ribonucleoprotein A1
HNRNPA2B1 HnRNPA2/B1 Heterogeneous Nuclear Ribonucleoprotein A2/B1
HNRNPA3 HNRNPA3 Heterogeneous nuclear ribonucleoprotein A3
HNRNPAB HNRNPAB Heterogeneous nuclear ribonucleoprotein A/B
HNRNPD HNRNPD Heterogeneous nuclear ribonucleoprotein D
HNRNPDL HNRNPDL Heterogeneous nuclear ribonucleoprotein D-like
HNRNPF HNRNPF Heterogeneous nuclear ribonucleoprotein F
HNRNPH1 HNRNPH1 Heterogeneous nuclear ribonucleoprotein H1
HNRNPH2 HNRNPH2 Heterogeneous nuclear ribonucleoprotein H2
HNRNPH3 HNRNPH3 Heterogeneous nuclear ribonucleoprotein H3
HNRNPK HNRNPK Heterogeneous Nuclear Ribonucleoprotein K
HNRNPUL1 HNRNPUL1 Heterogeneous nuclear ribonucleoprotein U-like protein 2
HSBP1 HSBP1 Heat Shock Factor Binding Protein 1
HSP90AA1 HSP90 Heat shock protein HSP 90-alpha
HSPA4 HSP70 RY Heat shock 70 kDa protein 4
HSPA9 HSP70 9B Stress-70 protein, mitochondrial
HSPB1 HSP27 Heat Shock Protein Family B (Small) Member 1 yes
HSPB8 HSPB8 Heat Shock Protein Family B (Small) Member 8
HSPBP1 HSPBP1 HSPA (Hsp70) Binding Protein 1
HSPD1 HSPD1 60 kDa heat shock protein, mitochondrial
HTT Huntingtin Huntingtin
IBTK IBTK Inhibitor Of Bruton Tyrosine Kinase
IFIH1 MDA5 Interferon Induced With Helicase C Domain 1
IGF2BP1 IGF2BP1 Insulin-like Growth Factor 2 mRNA-binding protein 1 yes
IGF2BP2 IGF2BP2 Insulin-like Growth Factor 2 mRNA-binding protein 2 yes
IGF2BP3 IGF2BP3 Insulin-like Growth Factor 2 mRNA Binding Protein 3 yes
IK IK Protein Red
ILF3 NF90 Interleukin Enhancer Binding Factor 3 yes
IPO7 IPO7 Importin-7
IPPK IP5K Inositol-Pentakisphosphate 2-Kinase
ITGB1 ITGB1 Integrin beta-1
JMJD6 JMJD6 Arginine Demethylase and Lysine Hydroxylase
KANK2 KANK2 KN motif and ankyrin repeat domain-containing protein 2
KEAP1 KEAP1/KLHL19 Kelch Like ECH Associated Protein 1
KHDRBS1 Sam68 KH RNA Binding Domain Containing, Signal Transduction Associated 1
KHDRBS3 KHDRBS3 KH domain-containing, RNA-binding, signal transduction-associated protein 3
KHSRP KSRP/FBP2 KH-Type Splicing Regulatory Protein
KIAA0232 KIAA0232 KIAA0232 yes
KIAA1524 CIP2A Protein CIP2A
KIF1B KIF1B Kinesin Family Member 1B
KIF13B KIF13B/GAKIN Kinesin Family Member 13B
KIF23 KIF23 Kinesin-like protein KIF23 yes
KIF2A Kinesin Heavy Chain Member 2 Kinesin Family Member 2A
KLC1 Kinesin Light Chain 1 Kinesin Light Chain 1
KPNA1 Importin-ɑ5 Karyopherin Subunit Alpha 1
KPNA2 Importin-ɑ1 Karyopherin Subunit Alpha 2
KPNA3 Importin-ɑ4 Karyopherin Subunit Alpha 3
KPNA6 Importin-ɑ7 Importin subunit alpha
KPNB1 Importin-β1 Karyopherin Subunit Beta 1
L1RE1 LINE1 ORF1p LINE1 ORF1 protein
LANCL1 LanC Like 1 LanC Like 1
LARP1 LARP1 La-related protein 1
LARP1B LARP1B La-related protein 1b
LARP4 La-Related protein 4 La Ribonucleoprotein Domain Family Member 4
LARP4B LARP4B La Ribonucleoprotein Domain Family Member 4B
LASP1 LIM And SH3 Protein 1/MLN50 LIM And SH3 Protein 1
LBR LBR Lamin-B receptor
LEMD3 LEMD3 Inner nuclear membrane protein Man1
LIG3 DNA Ligase 3 DNA Ligase 3
LIN28A LIN28A Lin-28 Homolog A
LIN28B LIN28B Lin-28 Homolog B
LMNA LMNA Prelamin-A/C
LPP LPP Lipoma-preferred partner
LSM1 LSM1 LSM1 Homolog, mRNA Degradation Associated yes
LSM12 LSM12 LSM12 Homolog
LSM14A RAP55 LSM14A, mRNA Processing Body Assembly Factor yes
LSM14B LSM14B Protein LSM14 homolog B yes
LSM3 LSM3 U6 snRNA-associated Sm-like protein LSm3 yes
LUC7L LUC7L Putative RNA-binding protein Luc7-like 1
LUZP1 LUZP1 Leucine zipper protein 1
MACF1 MACF1 Microtubule-actin cross-linking factor 1, isoforms 1/2/3/5
MAEL MAEL Maelstrom Spermatogenic Transposon Silencer
MAGEA4 MAGEA4 Melanoma-associated antigen 4
MAGED1 MAGED1 Melanoma-associated antigen D1
MAGED2 MAGED2 Melanoma-associated antigen D2
MAGOHB MAGOHB Protein mago nashi homolog 2
MAP1LC3A LC3-I Microtubule Associated Protein 1 Light Chain 3 Alpha
MAP4 MAP4 Microtubule-associated protein 4
MAPK1IP1L MAPK1IP1L Mitogen-Activated Protein Kinase 1 Interacting Protein 1 Like
MAP4K4 MAP4K4 Mitogen-activated protein kinase kinase kinase kinase 4
MAPK8 JNK1 Mitogen-Activated Protein Kinase 8
MAPRE1 MAPRE1 Microtubule-associated protein RP/EB family member 1
MAPRE2 MAPRE2 Microtubule Associated Protein RP/EB Family Member 2
MARF1 MARF1 Meiosis Regulator And mRNA Stability Factor 1 yes
MARS MARS Methionine—tRNA ligase, cytoplasmic
MBNL1 MBNL1 Muscleblind Like Splicing Regulator 1
MBNL2 MBNL2 Muscleblind Like Splicing Regulator 2
MCM4 MCM4 DNA replication licensing factor MCM4
MCM5 MCM5 DNA replication licensing factor MCM5
MCM7 MCM7 DNA replication licensing factor MCM7 yes
METAP1 METAP1 Methionine aminopeptidase
METAP2 METAP2 Methionyl Aminopeptidase 2
MCRIP1 FAM195B/GRAN2 Granulin-2
MCRIP2 FAM195A/GRAN1 Granulin-1
MEX3A MEX3A RNA-binding protein MEX3A yes
MEX3B MEX3B Mex-3 RNA Binding Family Member B
MEX3C MEX3C Mex-3 RNA Binding Family Member C
MEX3D MEX3D Mex-3 RNA Binding Family Member D
MFAP1 MFAP1 Microfibrillar-associated protein 1
MKI67 MKI67 Antigen KI-67
MKRN2 MKRN2 Makorin Ring Finger Protein 2
MOV10 MOV-10 Mov10 RISC Complex RNA Helicase yes
MSH6 MSH6 DNA mismatch repair protein Msh6
MSI1 Musashi-1 Musashi RNA Binding Protein 1 yes
MSI2 MSI2 RNA-binding protein Musashi homolog 2
MTHFD1 MTHFD1 C-1-tetrahydrofolate synthase, cytoplasmic
MTHFSD MTHFSD Methenyltetrahydrofolate Synthetase Domain Containing
MTOR MTOR Mechanistic Target Of Rapamycin
MYO6 MYO6 Unconventional myosin-VI
NCOA3 SRC-3 Nuclear Receptor Coactivator 3
NDEL1 NUDEL/MITAP1/EOPA NudE Neurodevelopment Protein 1 Like 1
NELFE NELF-E/RD Negative Elongation Factor Complex Member E
NEXN NEXN Nexilin
NXF1 NXF1/MEX67/TAP Nuclear RNA Export Factor 1
NKRF NRF NFK-B Repressing Factor
NOLC1 Nucleolar And Coiled-Body Phosphoprotein 1/NOPP140 Nucleolar And Coiled-Body Phosphoprotein 1
NONO NonO Non-POU Domain Containing Octamer Binding
NOP58 NOP58 Nucleolar protein 58 yes
NOSIP NOSIP Nitric oxide synthase-interacting protein
NOVA2 NOVA2 NOVA Alternative Splicing Regulator 2
NRG2 Neuregulin-2 Neuregulin-2
NSUN2 NSUN2 tRNA (cytosine(34)-C(5))-methyltransferase
NTMT1 NTMT1 N-terminal Xaa-Pro-Lys N-methyltransferase 1
NUDC NUDC Nuclear migration protein nudC
NUFIP1 NUFIP NUFIP1, FMR1 Interacting Protein 1
NUFIP2 NUFIP2 Nuclear fragile X mental retardation-interacting protein 2
NUPL2 NUPL2 Nucleoporin Like 2
NUP153 NUP153 Nucleoporin 153
NUP205 NUP205 Nuclear pore complex protein Nup205
NUP210 NUP210/GP210 Nucleoporin 210
NUP214 NUP214 Nucleoporin 214
NUP50 NUP50 Nucleoporin 50
NUP58 NUP58/NUPL1 Nucleoporin 58
NUP85 NUP85 Nucleoporin 85
NUP88 NUP88 Nucleoporin 88
NUP98 NUP98/NUP96 Nuclear pore complex protein Nup98-Nup96
OASL OASL/OASL1 2'-5'-Oligoadenylate Synthetase Like
OAS1 OAS 2′–5′ oligoadenylate synthetase
OAS2 OAS2 2'-5'-Oligoadenylate Synthetase 2
OGFOD1 TPA1 2-Oxoglutarate And Iron Dependent Oxygenase Domain Containing 1
OGG1 OGG1 8-Oxoguanine DNA Glycosylase
OSBPL9 Oxysterol Binding Protein Like 9 Oxysterol Binding Protein Like 9
OTUD4 OTUD4/HIN1 OTU Deubiquitinase 4
P4HB Prolyl 4-Hydroxylase Subunit Beta Prolyl 4-Hydroxylase Subunit Beta
PABPC1 PABP1 Poly(A) Binding Protein Cytoplasmic 1
PABPC4 PABPC4 Polyadenylate-binding protein 4
PAK4 PAK4 Serine/threonine-protein kinase PAK 4
PALLD Palladin Palladin
PARG PARG/PARG99/PARG102 Poly(ADP-Ribose) Glycohydrolase
PARK7 PARK7/DJ-1 Parkinsonism Associated Deglycase yes
PARN PARN/DAN Poly(A)-Specific Ribonuclease
PARP12 PARP-12/ARTD12 Poly(ADP-Ribose) Polymerase Family Member 12
PARP14 PARP-14 Poly(ADP-Ribose) Polymerase Family Member 14
PARP15 PARP-15 Poly(ADP-Ribose) Polymerase Family Member 15
PATL1 PATL1 PAT1 Homolog 1, Processing Body mRNA Decay Factor yes
PAWR PAWR PRKC apoptosis WT1 regulator protein
PCBP1 PCBP1/HNRNPE1 Poly(RC) Binding Protein 1
PCBP2 PCBP2/HNRNPE2 Poly(RC) Binding Protein 2
PCNA PCNA Proliferating cell nuclear antigen
PDAP1 PDAP1 PDGFA Associated Protein 1
PDCD4 PDCD4 Programmed Cell Death 4
PDCD6IP PDCD6IP Programmed cell death 6-interacting protein
PDIA3 PDIA3 Protein Disulfide Isomerase Family A Member 3
PDLIM1 PDLIM1 PDZ and LIM domain protein 1
PDLIM4 PDLIM4 PDZ and LIM domain protein 4
PDLIM5 PDLIM5 PDZ and LIM domain protein 5
PDS5B PDS5B Sister chromatid cohesion protein PDS5 homolog B
PEF1 PEF1 Penta-EF-Hand Domain Containing 1
PEG10 PEG10 Paternally Expressed 10
PELO PELO Protein pelota homolog
PEPD Peptidase D Peptidase D
PEX11B PEX11B Peroxisomal Biogenesis Factor 11 Beta
PFDN4 PFDN4 Prefoldin subunit 4
PFN1 Profilin 1 Profilin 1
PFN2 Profilin 2 Profilin 2
PGAM5 PGAM5 Serine/threonine-protein phosphatase PGAM5, mitochondrial
PGP PGP/G3PP Phosphoglycolate Phosphatase
PHB2 Prohibitin 2 Prohibitin 2
PHLDB2 PHLDB2 Pleckstrin homology-like domain family B member 2
PKP1 Plakophilin 1 Plakophilin 1
PKP2 Plakophilin 2 Plakophilin 2
PKP3 Plakophilin 3 Plakophilin 3
PNPT1 PNPase I Polyribonucleotide Nucleotidyltransferase 1
POLR2B POLR2B DNA-directed RNA polymerase
POM121 POM121 POM121 Transmembrane Nucleoporin
POP7 RPP20 POP7 Homolog, Ribonuclease P/MRP Subunit
PPME1 PPME1 Protein phosphatase methylesterase 1
PPP1R8 PPP1R8 Protein Phosphatase 1 Regulatory Subunit 8
PPP1R10 PPP1R10 Serine/threonine-protein phosphatase 1 regulatory subunit 10
PPP1R18 PPP1R18 Phostensin
PPP2R1A PPP2R1A Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform
PPP2R1B PPP2R1B Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform
PQBP1 PQBP-1 Polyglutamine Binding Protein 1
PRDX1 PRDX1 Peroxiredoxin-1
PRDX6 PRDX6 Peroxiredoxin-6
PRKAA2 AMPK-a2 Protein Kinase AMP-Activated Catalytic Subunit Alpha 2
PRKCA PKC-ɑ Protein Kinase C Alpha
PRKRA PACT Protein Activator Of Interferon Induced Protein Kinase EIF2AK2
PRMT1 PRMT1 Protein arginine N-methyltransferase 1
PRMT5 PRMT5 Protein arginine N-methyltransferase 5
PRRC2A PRRC2A Proline Rich Coiled-Coil 2A
PRRC2B PRRC2B Proline Rich Coiled-Coil 2B
PRRC2C PRRC2C Proline Rich Coiled-Coil 2C
PSMD2 PSMD2 26S proteasome non-ATPase regulatory subunit 2
PSPC1 PSP1 Paraspeckle Component 1
PTBP1 PTBP1 Polypyrimidine tract-binding protein 1
PTBP3 PTBP3 Polypyrimidine tract-binding protein 3
PTGES3 PTGES3 Prostaglandin E synthase 3
PTK2 FAK Protein Tyrosine Kinase 2
PUM1 Pumilio-1 Pumilio homolog 1 yes
PUM2 Pumilio-2 Pumilio RNA Binding Family Member 2
PURA PURA Transcriptional activator protein Pur-alpha
PURB PURB Transcriptional activator protein Pur-beta
PWP1 PWP1 PWP1 Homolog, Endonuclein
PXDNL PMR1 Peroxidasin Like
PYCR1 PYCR1 Pyrroline-5-carboxylate reductase
QKI QKI/HQK QKI, KH Domain Containing RNA Binding
R3HDM1 R3HDM1 R3H Domain Containing 1
R3HDM2 R3HDM2 R3H Domain Containing 2
RAB1A RAB1A Ras-related protein Rab-1A
RACGAP1 RACGAP1 Rac GTPase-activating protein 1
RACK1 RACK1 Receptor For Activated C Kinase 1
RAD21 RAD21 Double-strand-break repair protein rad21 homolog
RAE1 RAE1 Ribonucleic Acid Export 1
RAN RAN RAN, Member RAS Oncogene Family
RANBP1 RANBP1 Ran-specific GTPase-activating protein
RANBP2 RANBP2/NUP358 RAN Binding Protein 2
RBBP4 RBBP4 Histone-binding protein RBBP4
RBFOX1 RBFOX1 RNA binding protein fox-1 homolog yes
RBFOX2 RBFOX2 RNA binding protein fox-1 homolog 2
RBFOX3 RBFOX3 RNA binding protein fox-1 homolog 3
RBM12B RBM12B RNA-binding protein 12B
RBM15 RBM15 RNA-binding protein 15
RBM17 RBM17 RNA-binding protein 17
RBM25 RBM25 RNA-binding protein 25
RBM26 RBM26 RNA-binding protein 26
RBM3 RBM3 RNA-binding protein 3
RBM38 RBM38 RNA-binding protein 38
RBM4 RBM4 RNA Binding Motif Protein 4
RBM4B RBM4B RNA Binding Motif Protein 4B
RBM42 RBM42 RNA Binding Motif Protein 42
RBM45 RBM45 RNA Binding Motif Protein 45
RBM47 RBM47 RNA Binding Motif Protein 47
RBMS1 RBMS1 RNA-binding motif, single-stranded-interacting protein 1
RBMS2 RBMS2 RNA-binding motif, single-stranded-interacting protein 2
RBMX RBMX RNA Binding Motif Protein, X-Linked
RBPMS RBPMS RNA-binding protein with multiple splicing
RC3H1 Roquin-1 Ring Finger And CCCH-Type Domains 1
RC3H2 MNAB Ring Finger And CCCH-Type Domains 2
RCC1 RCC1 Regulator of chromosome condensation
RCC2 RCC2 Protein RCC2
RECQL RECQL1 RecQ Like Helicase
RFC3 RFC3 Replication factor C subunit 3
RFC4 RFC4 Replication factor C subunit 4
RGPD3 RGPD3 RanBP2-like and GRIP domain-containing protein 3
RHOA RhoA Ras Homolog Family Member A
RNASEL RNAse L Ribonuclease L
RNF214 RNF214 RING finger protein 214
RNF219 RNF219 RING finger protein 219 yes
RNF25 RNF25 Ring Finger Protein 25
RNH1 RNH1 Ribonuclease inhibitor
ROCK1 ROCK1 Rho Associated Coiled-Coil Containing Protein Kinase 1
RPS19 Ribosomal Protein S19 Ribosomal Protein S19
RPS3 40S Ribosomal Protein S3 40S Ribosomal Protein S3 yes
RPS6 Ribosomal Protein S6 Ribosomal Protein S6
RPS11 Ribosomal Protein S11 Ribosomal Protein S11
RPS24 Ribosomal Protein S24 Ribosomal Protein S24
RPS6KA3 RSK2 Ribosomal Protein S6 Kinase A3
RPS6KB1 S6K1 Ribosomal Protein S6 Kinase B1
RPS6KB2 S6K2 Ribosomal Protein S6 Kinase B2
RPTOR RAPTOR Regulatory Associated Protein of mTOR Complex 1
RSL1D1 RSL1D1 Ribosomal L1 domain-containing protein 1
RTCB RTCB tRNA-splicing ligase RtcB homolog, formerly C22orf28
RTRAF RTRAF (formerly C14orf166) RNA Transcription, Translation And Transport Factor
S100A7A S100A7A Protein S100-A7A
S100A9 S100A9 Protein S100-A9 yes
SAFB2 SAFB2 Scaffold attachment factor B2 yes
SAMD4A SMAUG1 Sterile Alpha Motif Domain Containing 4A
SAMD4B SMAUG2 Sterile Alpha Motif Domain Containing 4B
SCAPER SCAPER S-Phase Cyclin A Associated Protein In The ER
SEC24C SEC24C Protein transport protein Sec24C
SECISBP2 SECIS Binding Protein 2 SECIS Binding Protein 2
SERBP1 PAI-RBP1/SERBP1 SERPINE1 mRNA Binding Protein 1
SERPINE1 PAI-1/Serpin E1 Serpine Family E Member 1
SF1 SF1 Splicing Factor 1
SFN SFN 14-3-3 protein sigma
SFPQ PSF Splicing Factor Proline And Glutamine Rich
SFRS3 SFRS3 Serine/arginine-rich splicing factor 3
SIPA1L1 SIPA1L1 Signal-induced proliferation-associated 1-like protein 1
SIRT6 Sirtuin 6 Sirtuin 6
SLBP Stem-Loop Binding Protein Stem-Loop Binding Protein
SMAP2 SMAP2 Small ArfGAP2
SMARCA1 SMARCA1/SNF2L1 Probable global transcription activator SNF2L1
SMC4 SMC4 Structural maintenance of chromosomes protein
SMG1 SMG-1 SMG1, Nonsense Mediated mRNA Decay Associated PI3K Related Kinase
SMG6 SMG6 SMG6, Nonsense Mediated mRNA Decay Factor
SMG7 SMG7 SMG7, Nonsense Mediated mRNA Decay Factor yes
SMN1 Survival of Motor Neuron Survival Of Motor Neuron 1, Telomeric
SMU1 SMU1 WD40 repeat-containing protein SMU1
SMYD5 SMYD5 SMYD Family Member 5
SND1 Tudor-SN Staphylococcal Nuclease And Tudor Domain Containing 1
SNRPF SNRPF Small nuclear ribonucleoprotein F
SNTB2 SNTB2 Beta-2-syntrophin
SOGA3 SOGA3 SOGA Family Member 3
SORBS1 SORBS1 Sorbin and SH3 domain-containing protein 1
SORBS3 Vinexin Sorbin And SH3 Domain Containing 3
SOX3 SOX3 SRY-Box 3
SPAG5 Astrin Sperm Associated Antigen 5
SPATS2 SPATS2/SPATA10/SCR59 Spermatogenesis Associated Serine Rich 2
SPATS2L SGNP Spermatogenesis Associated Serine Rich 2 Like
SPECC1L SPECC1L Cytospin-A
SQSTM1 SQSTM1/p62 Sequestosome 1
SRI SRI Sorcin
SRP68 Signal Recognition Particle 68 Signal Recognition Particle 68
SRP9 SRP9 Signal Recognition Particle 9
SRRT SRRT Serrate RNA effector molecule homolog
SRSF1 ASF/SF2 Serine And Arginine Rich Splicing Factor 1
SRSF3 SRp20 Serine And Arginine Rich Splicing Factor 3
SRSF4 SRSF4 Serine/arginine-rich splicing factor 4
SRSF5 SRSF5/SRP40 Serine/arginine-rich splicing factor 5
SRSF7 9G8 Serine And Arginine Rich Splicing Factor 7
SRSF9 SRSF9/SRP30C Serine/arginine-rich splicing factor 9
SS18L1 SS18L1/CREST SS18L1, nBAF Chromatin Remodeling Complex Subunit
ST7 ST7/FAM4A1/HELG/RAY1/TSG7 Suppression Of Tumorigenicity 7 yes
STAT1 STAT1 Signal transducer and activator of transcription 1-alpha/beta
STAU1 Staufen 1 Staufen Double-Stranded RNA Binding Protein 1
STAU2 Staufen 2 Staufen Double-Stranded RNA Binding Protein 2 yes
STIP1 STIP1/HOP Stress-induced-phosphoprotein 1
STRAP STRAP Serine-threonine kinase receptor-associated protein
SUGP2 SUGP2 SURP and G-patch domain-containing protein 2
SUGT1 SUGT1 SGT1 Homolog, MIS12 Kinetochore Complex Assembly Cochaperone
SUN1 SUN1 SUN domain-containing protein 1
SYCP3 SYCP3 Synaptonemal complex protein 3
SYK SYK Spleen Associated Tyrosine Kinase
SYNCRIP SYNCRIP Heterogeneous nuclear ribonucleoprotein Q yes
TAGLN3 Transgelin 3 Transgelin 3
TAF15 TAF15 TATA-Box Binding Protein Associated Factor 15
TARDBP TDP-43 TAR DNA Binding Protein
TBRG1 TBRG1 Transforming Growth Factor Beta Regulator 1
TCEA1 TCEA1 Transcription elongation factor A protein 1
TCP1 TCP1 T-complex protein 1 subunit alpha
TDRD3 Tudor Domain Containing 3 Tudor Domain Containing 3
TDRD7 Tudor Domain Containing 7 Tudor Domain Containing 7
TERT TERT Telomerase Reverse Transcriptase
THOC2 THOC2 THO Complex 2
THRAP3 THRAP3 Thyroid Hormone Receptor Associated Protein 3
TIA1 TIA-1 TIA1 Cytotoxic Granule Associated RNA Binding Protein
TIAL1 TIAR TIA1 Cytotoxic Granule Associated RNA Binding Protein Like 1
TMEM131 TMEM131 Transmembrane Protein 131 yes
TMOD3 TMOD3 Tropomodulin-3
TNKS PARP-5a Tankyrase
TNKS1BP1 TNKS1BP1 182 kDa tankyrase-1-binding protein yes
TNPO1 Transportin-1 Transportin-1/Karyopherin (Importin) Beta 2
TNPO2 Transportin-2 Transportin-2
TNRC6A TNRC6A Trinucleotide repeat-containing gene 6A protein yes
TNRC6B TNRC6B Trinucleotide repeat-containing gene 6B protein yes
TNRC6C TNRC6C Trinucleotide repeat-containing gene 6C protein yes
TOMM34 TOMM34 Mitochondrial import receptor subunit TOM34
TOP3B Topoisomerase (DNA) III Beta Topoisomerase (DNA) III Beta
TPM1 TPM1 Tropomyosin alpha-1 chain
TPM2 TPM2 Tropomyosin beta chain
TPR TPR Translocated Promoter Region, Nuclear Basket Protein
TRA2B TRA2B Transformer 2 Beta Homolog
TRAF2 TRAF2 TNF Receptor Associated Factor 2
TRDMT1 DNMT2 tRNA Aspartic Acid Methyltransferase 1
TRIM21 TRIM21 E3 ubiquitin-protein ligase TRIM21
TRIM25 TRIM25 E3 ubiquitin/ISG15 ligase TRIM25
TRIM56 TRIM56 E3 ubiquitin-protein ligase TRIM56
TRIM71 TRIM71 E3 ubiquitin-protein ligase TRIM71
TRIP6 TRIP6 Thyroid receptor-interacting protein 6
TROVE2 RORNP TROVE Domain Family Member 2
TTC17 TTC17 Tetratricopeptide Repeat Domain 17 yes
TUBA1C TUBA1C Tubulin alpha-1C chain
TUBA3C TUBA3C Tubulin alpha-3C/D chain
TUBA4A TUBA4A Tubulin alpha-4A chain
TUBB3 TUBB3 Tubulin beta-3 chain
TUBB8 TUBB8 Tubulin beta-8 chain
TUFM TUFM Elongation factor Tu, mitochondrial
TXN TXN Thioredoxin
TXNDC17 TXNDC17 Thioredoxin Domain Containing 17
U2AF1 U2AF1 Splicing factor U2AF 35 kDa subunit
UBA1 UBA1 Ubiquitin-like modifier-activating enzyme 1
UBAP2 UBAP2 Ubiquitin-associated protein 2
UBAP2L UBAP2L Ubiquitin-associated protein 2-like
UBB Ubiquitin Ubiquitin
UBL5 Ubiquitin Like 5 Ubiquitin Like 5
UBQLN2 Ubiquilin 2 Ubiquilin 2
ULK1 ULK1 Unc-51 Like Autophagy Activating Kinase 1
ULK2 ULK2 Unc-51 Like Autophagy Activating Kinase 2
UPF1 UPF1 UPF1, RNA Helicase and ATPase yes
UPF2 UPF2 UPF2, RNA Helicase and ATPase
UPF3B UPF3B UPF3B, Regulator of Nonsense Mediated mRNA Decay
USP10 USP10 Ubiquitin Specific Peptidase 10
USP11 USP11 Ubiquitin Specific Peptidase 11
USP13 USP13 Ubiquitin Specific Peptidase 13
USP5 USP5 Ubiquitin carboxyl-terminal hydrolase 5
USP9X USP9X Ubiquitin Specific Peptidase 9, X-Linked
UTP18 UTP18 UTP18, Small Subunit Processome Component
VASP VASP Vasodilator-stimulated phosphoprotein
VBP1 VBP1 VHL Binding Protein 1
VCP VCP Valosin Containing Protein
WBP2 WBP2 WW Domain Binding Protein 2
WDR47 WDR47 WD Repeat Domain 47
WDR62 WDR62 WD Repeat Domain 62
XPO1 XPO1/CRM1 Exportin 1
XRN1 XRN1 5'-3' Exoribonuclease 1 yes
XRN2 XRN2 5'-3' Exoribonuclease 2
YARS YARS Tyrosine—tRNA ligase, cytoplasmic
YBX1 YB-1 Y-Box Binding Protein 1
YBX3 YBX3/ZONAB Y-box-binding protein 3
YES1 YES1 Tyrosine-protein kinase Yes
YLPM1 YLPM1 YLP Motif Containing 1
YTHDF1 YTHDF1 YTH domain family protein 1
YTHDF2 YTHDF2 YTH domain family protein 2 yes
YTHDF3 YTHDF3 YTH domain family protein 3
YWHAB 14-3-3 Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Beta
YWHAH 14-3-3 14-3-3 protein eta
YWHAQ 14-3-3 14-3-3 protein theta
ZBP1 ZBP1 Z-DNA Binding Protein 1
ZCCHC11 ZCCHC11 Zinc finger CCCH domain-containing protein 11
ZCCHC14 ZCCHC14 Zinc finger CCCH domain-containing protein 14
ZC3H11A ZC3H11A Zinc finger CCCH domain-containing protein 11a
ZC3H14 ZC3H14 Zinc finger CCCH domain-containing protein 14
ZCCHC2 ZCCHC2 Zinc finger CCCH domain-containing protein 2
ZCCHC3 ZCCHC3 Zinc finger CCCH domain-containing protein 3
ZC3H7A ZC3H7A Zinc finger CCCH domain-containing protein 7A
ZC3H7B ZC3H7B Zinc finger CCCH domain-containing protein 7B
ZC3HAV1 PARP-13.1/PARP-13.2/ARTD13 Zinc Finger CCCH-Type Containing, Antiviral 1 yes
ZFAND1 ZFAND1 Zinc Finger AN1-Type Containing 1
ZFP36 TTP/TIS11 ZFP36 Ring Finger Protein/Trisetrapolin yes
ZNF598 ZNF598 Zinc finger protein 598
ZNF638 ZNF638 Zinc finger protein 638

References

  1. Gutierrez-Beltran E, Moschou PN, Smertenko AP, Bozhkov PV (March 2015). "Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in Arabidopsis". The Plant Cell. 27 (3): 926–943. doi:10.1105/tpc.114.134494. PMC 4558657. PMID 25736060.
  2. Hirose T, Ninomiya K, Nakagawa S, Yamazaki T (April 2023). "A guide to membraneless organelles and their various roles in gene regulation". Nature Reviews. Molecular Cell Biology. 24 (4): 288–304. doi:10.1038/s41580-022-00558-8. PMID 36424481. S2CID 253879916.
  3. ^ Kayali F, Montie HL, Rafols JA, DeGracia DJ (2005). "Prolonged translation arrest in reperfused hippocampal cornu Ammonis 1 is mediated by stress granules". Neuroscience. 134 (4): 1223–1245. doi:10.1016/j.neuroscience.2005.05.047. PMID 16055272. S2CID 15066267.
  4. Nover L, Scharf KD, Neumann D (March 1989). "Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs". Molecular and Cellular Biology. 9 (3): 1298–1308. doi:10.1128/mcb.9.3.1298. PMC 362722. PMID 2725500.
  5. Paul J. Anderson, Brigham and Women's Hospital
  6. Mollet S, Cougot N, Wilczynska A, Dautry F, Kress M, Bertrand E, et al. (October 2008). "Translationally repressed mRNA transiently cycles through stress granules during stress". Molecular Biology of the Cell. 19 (10): 4469–4479. doi:10.1091/mbc.E08-05-0499. PMC 2555929. PMID 18632980.
  7. ^ Khong A, Matheny T, Jain S, Mitchell SF, Wheeler JR, Parker R (November 2017). "The Stress Granule Transcriptome Reveals Principles of mRNA Accumulation in Stress Granules". Molecular Cell. 68 (4): 808–820.e5. doi:10.1016/j.molcel.2017.10.015. PMC 5728175. PMID 29129640.
  8. Khong A, Parker R (December 2018). "mRNP architecture in translating and stress conditions reveals an ordered pathway of mRNP compaction". The Journal of Cell Biology. 217 (12): 4124–4140. doi:10.1083/jcb.201806183. PMC 6279387. PMID 30322972.
  9. Khong A, Jain S, Matheny T, Wheeler JR, Parker R (March 2018). "Isolation of mammalian stress granule cores for RNA-Seq analysis". Methods. 137: 49–54. doi:10.1016/j.ymeth.2017.11.012. PMC 5866748. PMID 29196162.
  10. Forreiter C, Kirschner M, Nover L (December 1997). "Stable transformation of an Arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo". The Plant Cell. 9 (12): 2171–2181. doi:10.1105/tpc.9.12.2171. PMC 157066. PMID 9437862.
  11. Löw D, Brändle K, Nover L, Forreiter C (September 2000). "Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo". Planta. 211 (4): 575–582. Bibcode:2000Plant.211..575L. doi:10.1007/s004250000315. PMID 11030557. S2CID 9646838.
  12. Stuger R, Ranostaj S, Materna T, Forreiter C (May 1999). "Messenger RNA-binding properties of nonpolysomal ribonucleoproteins from heat-stressed tomato cells". Plant Physiology. 120 (1): 23–32. doi:10.1104/pp.120.1.23. PMC 59255. PMID 10318680.
  13. Schmid HP, Akhayat O, Martins De Sa C, Puvion F, Koehler K, Scherrer K (January 1984). "The prosome: an ubiquitous morphologically distinct RNP particle associated with repressed mRNPs and containing specific ScRNA and a characteristic set of proteins". The EMBO Journal. 3 (1): 29–34. doi:10.1002/j.1460-2075.1984.tb01757.x. PMC 557293. PMID 6200323.
  14. Aulas A, Lyons SM, Fay MM, Anderson P, Ivanov P (November 2018). "Nitric oxide triggers the assembly of "type II" stress granules linked to decreased cell viability". Cell Death & Disease. 9 (11): 1129. doi:10.1038/s41419-018-1173-x. PMC 6234215. PMID 30425239.
  15. Berchtold D, Battich N, Pelkmans L (December 2018). "A Systems-Level Study Reveals Regulators of Membrane-less Organelles in Human Cells". Molecular Cell. 72 (6): 1035–1049.e5. doi:10.1016/j.molcel.2018.10.036. PMID 30503769.
  16. ^ Aulas A, Fay MM, Lyons SM, Achorn CA, Kedersha N, Anderson P, et al. (March 2017). "Stress-specific differences in assembly and composition of stress granules and related foci". Journal of Cell Science. 130 (5): 927–937. doi:10.1242/jcs.199240. PMC 5358336. PMID 28096475.
  17. Qifti A, Jackson L, Singla A, Garwain O, Scarlata S (October 2021). "Stimulation of phospholipase Cβ1 by Gαq promotes the assembly of stress granule proteins". Science Signaling. 14 (705): eaav1012. doi:10.1126/scisignal.aav1012. PMID 34665639.
  18. Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, et al. (December 2004). "Stress granule assembly is mediated by prion-like aggregation of TIA-1". Molecular Biology of the Cell. 15 (12): 5383–5398. doi:10.1091/mbc.E04-08-0715. PMC 532018. PMID 15371533.
  19. Ivanov PA, Chudinova EM, Nadezhdina ES (November 2003). "Disruption of microtubules inhibits cytoplasmic ribonucleoprotein stress granule formation". Experimental Cell Research. 290 (2): 227–233. doi:10.1016/S0014-4827(03)00290-8. PMID 14567982.
  20. ^ Mahboubi H, Barisé R, Stochaj U (July 2015). "5'-AMP-activated protein kinase alpha regulates stress granule biogenesis". Biochimica et Biophysica Acta. 1853 (7): 1725–1737. doi:10.1016/j.bbamcr.2015.03.015. PMID 25840010.
  21. ^ Ohn T, Kedersha N, Hickman T, Tisdale S, Anderson P (October 2008). "A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly". Nature Cell Biology. 10 (10): 1224–1231. doi:10.1038/ncb1783. PMC 4318256. PMID 18794846.
  22. ^ Tsai NP, Wei LN (April 2010). "RhoA/ROCK1 signaling regulates stress granule formation and apoptosis". Cellular Signalling. 22 (4): 668–675. doi:10.1016/j.cellsig.2009.12.001. PMC 2815184. PMID 20004716.
  23. ^ Van Treeck B, Protter DS, Matheny T, Khong A, Link CD, Parker R (March 2018). "RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome". Proceedings of the National Academy of Sciences of the United States of America. 115 (11): 2734–2739. Bibcode:2018PNAS..115.2734V. doi:10.1073/pnas.1800038115. PMC 5856561. PMID 29483269.
  24. ^ Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R (January 2016). "ATPase-Modulated Stress Granules Contain a Diverse Proteome and Substructure". Cell. 164 (3): 487–498. doi:10.1016/j.cell.2015.12.038. PMC 4733397. PMID 26777405.
  25. ^ Chalupníková K, Lattmann S, Selak N, Iwamoto F, Fujiki Y, Nagamine Y (December 2008). "Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain". The Journal of Biological Chemistry. 283 (50): 35186–35198. doi:10.1074/jbc.M804857200. PMC 3259895. PMID 18854321.
  26. Hilliker A, Gao Z, Jankowsky E, Parker R (September 2011). "The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex". Molecular Cell. 43 (6): 962–972. doi:10.1016/j.molcel.2011.08.008. PMC 3268518. PMID 21925384.
  27. Epling LB, Grace CR, Lowe BR, Partridge JF, Enemark EJ (May 2015). "Cancer-associated mutants of RNA helicase DDX3X are defective in RNA-stimulated ATP hydrolysis". Journal of Molecular Biology. 427 (9): 1779–1796. doi:10.1016/j.jmb.2015.02.015. PMC 4402148. PMID 25724843.
  28. ^ Valentin-Vega YA, Wang YD, Parker M, Patmore DM, Kanagaraj A, Moore J, et al. (May 2016). "Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation". Scientific Reports. 6 (1): 25996. Bibcode:2016NatSR...625996V. doi:10.1038/srep25996. PMC 4867597. PMID 27180681.
  29. Van Treeck B, Parker R (August 2018). "Emerging Roles for Intermolecular RNA-RNA Interactions in RNP Assemblies". Cell. 174 (4): 791–802. doi:10.1016/j.cell.2018.07.023. PMC 6200146. PMID 30096311.
  30. Adivarahan S, Livingston N, Nicholson B, Rahman S, Wu B, Rissland OS, et al. (November 2018). "Spatial Organization of Single mRNPs at Different Stages of the Gene Expression Pathway". Molecular Cell. 72 (4): 727–738.e5. doi:10.1016/j.molcel.2018.10.010. PMC 6592633. PMID 30415950.
  31. Anders M, Chelysheva I, Goebel I, Trenkner T, Zhou J, Mao Y, et al. (August 2018). "Dynamic mA methylation facilitates mRNA triaging to stress granules". Life Science Alliance. 1 (4): e201800113. doi:10.26508/lsa.201800113. PMC 6238392. PMID 30456371.
  32. Kudrin P, Singh A, Meierhofer D, Kuśnierczyk A, Ørom UA (April 2024). "N4-acetylcytidine (ac4C) promotes mRNA localization to stress granules". EMBO Reports. 25 (4): 1814–1834. doi:10.1038/s44319-024-00098-6. PMC 11014937. PMID 38413733.
  33. Tauber D, Tauber G, Khong A, Van Treeck B, Pelletier J, Parker R (February 2020). "Modulation of RNA Condensation by the DEAD-Box Protein eIF4A". Cell. 180 (3): 411–426.e16. doi:10.1016/j.cell.2019.12.031. PMC 7194247. PMID 31928844.
  34. ^ Aulas A, Caron G, Gkogkas CG, Mohamed NV, Destroismaisons L, Sonenberg N, et al. (April 2015). "G3BP1 promotes stress-induced RNA granule interactions to preserve polyadenylated mRNA". The Journal of Cell Biology. 209 (1): 73–84. doi:10.1083/jcb.201408092. PMC 4395486. PMID 25847539.
  35. ^ Hubstenberger A, Courel M, Bénard M, Souquere S, Ernoult-Lange M, Chouaib R, et al. (October 2017). "P-Body Purification Reveals the Condensation of Repressed mRNA Regulons". Molecular Cell. 68 (1): 144–157.e5. doi:10.1016/j.molcel.2017.09.003. PMID 28965817.
  36. ^ Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, et al. (June 2005). "Stress granules and processing bodies are dynamically linked sites of mRNP remodeling". The Journal of Cell Biology. 169 (6): 871–884. doi:10.1083/jcb.200502088. PMC 2171635. PMID 15967811.
  37. Buchan JR, Muhlrad D, Parker R (November 2008). "P bodies promote stress granule assembly in Saccharomyces cerevisiae". The Journal of Cell Biology. 183 (3): 441–455. doi:10.1083/jcb.200807043. PMC 2575786. PMID 18981231.
  38. ^ Figley MD (2015). Profilin 1, stress granules, and ALS pathogenesis (PhD). Stanford University.
  39. ^ Aulas A, Vande Velde C (2015). "Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS?". Frontiers in Cellular Neuroscience. 9: 423. doi:10.3389/fncel.2015.00423. PMC 4615823. PMID 26557057.
  40. ^ Youn JY, Dyakov BJ, Zhang J, Knight JD, Vernon RM, Forman-Kay JD, et al. (October 2019). "Properties of Stress Granule and P-Body Proteomes". Molecular Cell. 76 (2): 286–294. doi:10.1016/j.molcel.2019.09.014. PMID 31626750.
  41. Aulas A, Fay MM, Szaflarski W, Kedersha N, Anderson P, Ivanov P (May 2017). "Methods to Classify Cytoplasmic Foci as Mammalian Stress Granules". Journal of Visualized Experiments (123). doi:10.3791/55656. PMC 5607937. PMID 28570526.
  42. Wheeler JR, Matheny T, Jain S, Abrisch R, Parker R (September 2016). "Distinct stages in stress granule assembly and disassembly". eLife. 5. doi:10.7554/eLife.18413. PMC 5014549. PMID 27602576.
  43. Wheeler JR, Jain S, Khong A, Parker R (August 2017). "Isolation of yeast and mammalian stress granule cores". Methods. 126: 12–17. doi:10.1016/j.ymeth.2017.04.020. PMC 5924690. PMID 28457979.
  44. ^ Markmiller S, Soltanieh S, Server KL, Mak R, Jin W, Fang MY, et al. (January 2018). "Context-Dependent and Disease-Specific Diversity in Protein Interactions within Stress Granules". Cell. 172 (3): 590–604.e13. doi:10.1016/j.cell.2017.12.032. PMC 5969999. PMID 29373831.
  45. ^ Youn JY, Dunham WH, Hong SJ, Knight JD, Bashkurov M, Chen GI, et al. (February 2018). "High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies". Molecular Cell. 69 (3): 517–532.e11. doi:10.1016/j.molcel.2017.12.020. PMID 29395067.
  46. ^ Marmor-Kollet H, Siany A, Kedersha N, Knafo N, Rivkin N, Danino YM, et al. (December 2020). "Spatiotemporal Proteomic Analysis of Stress Granule Disassembly Using APEX Reveals Regulation by SUMOylation and Links to ALS Pathogenesis". Molecular Cell. 80 (5): 876–891.e6. doi:10.1016/j.molcel.2020.10.032. PMC 7816607. PMID 33217318.
  47. ^ Weissbach R, Scadden AD (March 2012). "Tudor-SN and ADAR1 are components of cytoplasmic stress granules". RNA. 18 (3): 462–471. doi:10.1261/rna.027656.111. PMC 3285934. PMID 22240577.
  48. ^ Gallois-Montbrun S, Kramer B, Swanson CM, Byers H, Lynham S, Ward M, et al. (March 2007). "Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules". Journal of Virology. 81 (5): 2165–2178. doi:10.1128/JVI.02287-06. PMC 1865933. PMID 17166910.
  49. ^ Goodier JL, Zhang L, Vetter MR, Kazazian HH (September 2007). "LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex". Molecular and Cellular Biology. 27 (18): 6469–6483. doi:10.1128/MCB.00332-07. PMC 2099616. PMID 17562864.
  50. Detzer A, Engel C, Wünsche W, Sczakiel G (April 2011). "Cell stress is related to re-localization of Argonaute 2 and to decreased RNA interference in human cells". Nucleic Acids Research. 39 (7): 2727–2741. doi:10.1093/nar/gkq1216. PMC 3074141. PMID 21148147.
  51. Lou Q, Hu Y, Ma Y, Dong Z (January 2019). "RNA interference may suppress stress granule formation by preventing argonaute 2 recruitment". American Journal of Physiology. Cell Physiology. 316 (1): C81 – C91. doi:10.1152/ajpcell.00251.2018. PMC 6383145. PMID 30404558.
  52. ^ Kolobova E, Efimov A, Kaverina I, Rishi AK, Schrader JW, Ham AJ, et al. (February 2009). "Microtubule-dependent association of AKAP350A and CCAR1 with RNA stress granules". Experimental Cell Research. 315 (3): 542–555. doi:10.1016/j.yexcr.2008.11.011. PMC 2788823. PMID 19073175.
  53. ^ Pizzo E, Sarcinelli C, Sheng J, Fusco S, Formiggini F, Netti P, et al. (September 2013). "Ribonuclease/angiogenin inhibitor 1 regulates stress-induced subcellular localization of angiogenin to control growth and survival". Journal of Cell Science. 126 (Pt 18): 4308–4319. doi:10.1242/jcs.134551. PMC 3772394. PMID 23843625.
  54. ^ Pare JM, Tahbaz N, López-Orozco J, LaPointe P, Lasko P, Hobman TC (July 2009). "Hsp90 regulates the function of argonaute 2 and its recruitment to stress granules and P-bodies". Molecular Biology of the Cell. 20 (14): 3273–3284. doi:10.1091/mbc.E09-01-0082. PMC 2710822. PMID 19458189.
  55. ^ Ralser M, Albrecht M, Nonhoff U, Lengauer T, Lehrach H, Krobitsch S (February 2005). "An integrative approach to gain insights into the cellular function of human ataxin-2". Journal of Molecular Biology. 346 (1): 203–214. doi:10.1016/j.jmb.2004.11.024. hdl:11858/00-001M-0000-0010-86DE-D. PMID 15663938.
  56. ^ Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Yaspo ML, et al. (April 2007). "Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules". Molecular Biology of the Cell. 18 (4): 1385–1396. doi:10.1091/mbc.E06-12-1120. PMC 1838996. PMID 17392519.
  57. ^ Kaehler C, Isensee J, Nonhoff U, Terrey M, Hucho T, Lehrach H, et al. (2012). "Ataxin-2-like is a regulator of stress granules and processing bodies". PLOS ONE. 7 (11): e50134. Bibcode:2012PLoSO...750134K. doi:10.1371/journal.pone.0050134. PMC 3507954. PMID 23209657.
  58. Nihei Y, Ito D, Suzuki N (November 2012). "Roles of ataxin-2 in pathological cascades mediated by TAR DNA-binding protein 43 (TDP-43) and Fused in Sarcoma (FUS)". The Journal of Biological Chemistry. 287 (49): 41310–41323. doi:10.1074/jbc.M112.398099. PMC 3510829. PMID 23048034.
  59. ^ Figley MD, Bieri G, Kolaitis RM, Taylor JP, Gitler AD (June 2014). "Profilin 1 associates with stress granules and ALS-linked mutations alter stress granule dynamics". The Journal of Neuroscience. 34 (24): 8083–8097. doi:10.1523/JNEUROSCI.0543-14.2014. PMC 4051967. PMID 24920614.
  60. ^ Yang P, Mathieu C, Kolaitis RM, Zhang P, Messing J, Yurtsever U, et al. (April 2020). "G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble Stress Granules". Cell. 181 (2): 325–345.e28. doi:10.1016/j.cell.2020.03.046. PMC 7448383. PMID 32302571.
  61. Kim B, Rhee K (2016). "BOULE, a Deleted in Azoospermia Homolog, Is Recruited to Stress Granules in the Mouse Male Germ Cells". PLOS ONE. 11 (9): e0163015. Bibcode:2016PLoSO..1163015K. doi:10.1371/journal.pone.0163015. PMC 5024984. PMID 27632217.
  62. Maharjan N, Künzli C, Buthey K, Saxena S (May 2017). "C9ORF72 Regulates Stress Granule Formation and Its Deficiency Impairs Stress Granule Assembly, Hypersensitizing Cells to Stress". Molecular Neurobiology. 54 (4): 3062–3077. doi:10.1007/s12035-016-9850-1. PMID 27037575. S2CID 27449387.
  63. ^ Chitiprolu M, Jagow C, Tremblay V, Bondy-Chorney E, Paris G, Savard A, et al. (July 2018). "A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy". Nature Communications. 9 (1): 2794. Bibcode:2018NatCo...9.2794C. doi:10.1038/s41467-018-05273-7. PMC 6052026. PMID 30022074.
  64. Decca MB, Carpio MA, Bosc C, Galiano MR, Job D, Andrieux A, et al. (March 2007). "Post-translational arginylation of calreticulin: a new isospecies of calreticulin component of stress granules". The Journal of Biological Chemistry. 282 (11): 8237–8245. doi:10.1074/jbc.M608559200. PMC 2702537. PMID 17197444.
  65. Solomon S, Xu Y, Wang B, David MD, Schubert P, Kennedy D, et al. (March 2007). "Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs". Molecular and Cellular Biology. 27 (6): 2324–2342. doi:10.1128/MCB.02300-06. PMC 1820512. PMID 17210633.
  66. ^ Ratovitski T, Chighladze E, Arbez N, Boronina T, Herbrich S, Cole RN, et al. (May 2012). "Huntingtin protein interactions altered by polyglutamine expansion as determined by quantitative proteomic analysis". Cell Cycle. 11 (10): 2006–2021. doi:10.4161/cc.20423. PMC 3359124. PMID 22580459.
  67. ^ Kedersha N, Panas MD, Achorn CA, Lyons S, Tisdale S, Hickman T, et al. (March 2016). "G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits". The Journal of Cell Biology. 212 (7): 845–860. doi:10.1083/jcb.201508028. PMC 4810302. PMID 27022092.
  68. ^ Reineke LC, Kedersha N, Langereis MA, van Kuppeveld FJ, Lloyd RE (March 2015). "Stress granules regulate double-stranded RNA-dependent protein kinase activation through a complex containing G3BP1 and Caprin1". mBio. 6 (2): e02486. doi:10.1128/mBio.02486-14. PMC 4453520. PMID 25784705.
  69. ^ Baguet A, Degot S, Cougot N, Bertrand E, Chenard MP, Wendling C, et al. (August 2007). "The exon-junction-complex-component metastatic lymph node 51 functions in stress-granule assembly". Journal of Cell Science. 120 (Pt 16): 2774–2784. doi:10.1242/jcs.009225. PMID 17652158.
  70. ^ Vessey JP, Vaccani A, Xie Y, Dahm R, Karra D, Kiebler MA, et al. (June 2006). "Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules". The Journal of Neuroscience. 26 (24): 6496–6508. doi:10.1523/JNEUROSCI.0649-06.2006. PMC 6674044. PMID 16775137.
  71. Moujalled D, James JL, Yang S, Zhang K, Duncan C, Moujalled DM, et al. (March 2015). "Phosphorylation of hnRNP K by cyclin-dependent kinase 2 controls cytosolic accumulation of TDP-43". Human Molecular Genetics. 24 (6): 1655–1669. doi:10.1093/hmg/ddu578. PMID 25410660.
  72. Fujimura K, Kano F, Murata M (February 2008). "Dual localization of the RNA binding protein CUGBP-1 to stress granule and perinucleolar compartment". Experimental Cell Research. 314 (3): 543–553. doi:10.1016/j.yexcr.2007.10.024. PMID 18164289.
  73. Fathinajafabadi A, Pérez-Jiménez E, Riera M, Knecht E, Gonzàlez-Duarte R (2014). "CERKL, a retinal disease gene, encodes an mRNA-binding protein that localizes in compact and untranslated mRNPs associated with microtubules". PLOS ONE. 9 (2): e87898. Bibcode:2014PLoSO...987898F. doi:10.1371/journal.pone.0087898. PMC 3912138. PMID 24498393.
  74. De Leeuw F, Zhang T, Wauquier C, Huez G, Kruys V, Gueydan C (December 2007). "The cold-inducible RNA-binding protein migrates from the nucleus to cytoplasmic stress granules by a methylation-dependent mechanism and acts as a translational repressor". Experimental Cell Research. 313 (20): 4130–4144. doi:10.1016/j.yexcr.2007.09.017. PMID 17967451.
  75. Rojas M, Farr GW, Fernandez CF, Lauden L, McCormack JC, Wolin SL (2012). "Yeast Gis2 and its human ortholog CNBP are novel components of stress-induced RNP granules". PLOS ONE. 7 (12): e52824. Bibcode:2012PLoSO...752824R. doi:10.1371/journal.pone.0052824. PMC 3528734. PMID 23285195.
  76. Cougot N, Babajko S, Séraphin B (April 2004). "Cytoplasmic foci are sites of mRNA decay in human cells". The Journal of Cell Biology. 165 (1): 31–40. doi:10.1083/jcb.200309008. PMC 2172085. PMID 15067023.
  77. ^ Fujimura K, Kano F, Murata M (March 2008). "Identification of PCBP2, a facilitator of IRES-mediated translation, as a novel constituent of stress granules and processing bodies". RNA. 14 (3): 425–431. doi:10.1261/rna.780708. PMC 2248264. PMID 18174314.
  78. ^ Wilczynska A, Aigueperse C, Kress M, Dautry F, Weil D (March 2005). "The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules". Journal of Cell Science. 118 (Pt 5): 981–992. doi:10.1242/jcs.01692. PMID 15731006.
  79. Reineke LC, Tsai WC, Jain A, Kaelber JT, Jung SY, Lloyd RE (February 2017). "Casein Kinase 2 Is Linked to Stress Granule Dynamics through Phosphorylation of the Stress Granule Nucleating Protein G3BP1". Molecular and Cellular Biology. 37 (4): e00596–16. doi:10.1128/MCB.00596-16. PMC 5288577. PMID 27920254.
  80. ^ Kim JE, Ryu I, Kim WJ, Song OK, Ryu J, Kwon MY, et al. (January 2008). "Proline-rich transcript in brain protein induces stress granule formation". Molecular and Cellular Biology. 28 (2): 803–813. doi:10.1128/MCB.01226-07. PMC 2223406. PMID 17984221.
  81. Kim B, Cooke HJ, Rhee K (February 2012). "DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress". Development. 139 (3): 568–578. doi:10.1242/dev.075846. PMID 22223682.
  82. ^ Onishi H, Kino Y, Morita T, Futai E, Sasagawa N, Ishiura S (July 2008). "MBNL1 associates with YB-1 in cytoplasmic stress granules". Journal of Neuroscience Research. 86 (9): 1994–2002. doi:10.1002/jnr.21655. PMID 18335541. S2CID 9431966.
  83. Yasuda-Inoue M, Kuroki M, Ariumi Y (November 2013). "DDX3 RNA helicase is required for HIV-1 Tat function". Biochemical and Biophysical Research Communications. 441 (3): 607–611. doi:10.1016/j.bbrc.2013.10.107. PMID 24183723.
  84. ^ Goulet I, Boisvenue S, Mokas S, Mazroui R, Côté J (October 2008). "TDRD3, a novel Tudor domain-containing protein, localizes to cytoplasmic stress granules". Human Molecular Genetics. 17 (19): 3055–3074. doi:10.1093/hmg/ddn203. PMC 2536506. PMID 18632687.
  85. Valentin-Vega YA, Wang YD, Parker M, Patmore DM, Kanagaraj A, Moore J, et al. (May 2016). "Cancer-associated DDX3X mutations drive stress granule assembly and impair global translation". Scientific Reports. 6: 25996. Bibcode:2016NatSR...625996V. doi:10.1038/srep25996. PMC 4867597. PMID 27180681.
  86. ^ Saito M, Hess D, Eglinger J, Fritsch AW, Kreysing M, Weinert BT, et al. (January 2019). "Acetylation of intrinsically disordered regions regulates phase separation". Nature Chemical Biology. 15 (1): 51–61. doi:10.1038/s41589-018-0180-7. PMID 30531905. S2CID 54471609.
  87. ^ Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura A, et al. (2012). "Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity". PLOS ONE. 7 (8): e43031. Bibcode:2012PLoSO...743031O. doi:10.1371/journal.pone.0043031. PMC 3418241. PMID 22912779.
  88. ^ Thedieck K, Holzwarth B, Prentzell MT, Boehlke C, Kläsener K, Ruf S, et al. (August 2013). "Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells". Cell. 154 (4): 859–874. doi:10.1016/j.cell.2013.07.031. PMID 23953116.
  89. ^ Bish R, Cuevas-Polo N, Cheng Z, Hambardzumyan D, Munschauer M, Landthaler M, et al. (July 2015). "Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins". Biomolecules. 5 (3): 1441–1466. doi:10.3390/biom5031441. PMC 4598758. PMID 26184334.
  90. Salleron L, Magistrelli G, Mary C, Fischer N, Bairoch A, Lane L (December 2014). "DERA is the human deoxyribose phosphate aldolase and is involved in stress response". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1843 (12): 2913–2925. doi:10.1016/j.bbamcr.2014.09.007. PMID 25229427.
  91. Ogawa F, Kasai M, Akiyama T (December 2005). "A functional link between Disrupted-In-Schizophrenia 1 and the eukaryotic translation initiation factor 3". Biochemical and Biophysical Research Communications. 338 (2): 771–776. doi:10.1016/j.bbrc.2005.10.013. PMID 16243297.
  92. ^ Belli V, Matrone N, Sagliocchi S, Incarnato R, Conte A, Pizzo E, et al. (December 2019). "A dynamic link between H/ACA snoRNP components and cytoplasmic stress granules". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1866 (12): 118529. doi:10.1016/j.bbamcr.2019.118529. PMID 31412274.
  93. ^ Loschi M, Leishman CC, Berardone N, Boccaccio GL (November 2009). "Dynein and kinesin regulate stress-granule and P-body dynamics". Journal of Cell Science. 122 (Pt 21): 3973–3982. doi:10.1242/jcs.051383. PMC 2773196. PMID 19825938.
  94. ^ Geng Q, Xhabija B, Knuckle C, Bonham CA, Vacratsis PO (January 2017). "The Atypical Dual Specificity Phosphatase hYVH1 Associates with Multiple Ribonucleoprotein Particles". The Journal of Biological Chemistry. 292 (2): 539–550. doi:10.1074/jbc.M116.715607. PMC 5241730. PMID 27856639.
  95. ^ Tsai NP, Tsui YC, Wei LN (March 2009). "Dynein motor contributes to stress granule dynamics in primary neurons". Neuroscience. 159 (2): 647–656. doi:10.1016/j.neuroscience.2008.12.053. PMC 2650738. PMID 19171178.
  96. ^ Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L (February 2013). "Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling". Cell. 152 (4): 791–805. doi:10.1016/j.cell.2013.01.033. PMID 23415227.
  97. Shigunov P, Sotelo-Silveira J, Stimamiglio MA, Kuligovski C, Irigoín F, Badano JL, et al. (July 2014). "Ribonomic analysis of human DZIP1 reveals its involvement in ribonucleoprotein complexes and stress granules". BMC Molecular Biology. 15: 12. doi:10.1186/1471-2199-15-12. PMC 4091656. PMID 24993635.
  98. ^ Kimball SR, Horetsky RL, Ron D, Jefferson LS, Harding HP (February 2003). "Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes". American Journal of Physiology. Cell Physiology. 284 (2): C273 – C284. doi:10.1152/ajpcell.00314.2002. PMID 12388085. S2CID 14681272.
  99. ^ Reineke LC, Lloyd RE (March 2015). "The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses". Journal of Virology. 89 (5): 2575–2589. doi:10.1128/JVI.02791-14. PMC 4325707. PMID 25520508.
  100. ^ Kedersha N, Chen S, Gilks N, Li W, Miller IJ, Stahl J, et al. (January 2002). "Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules". Molecular Biology of the Cell. 13 (1): 195–210. doi:10.1091/mbc.01-05-0221. PMC 65082. PMID 11809833.
  101. ^ Li CH, Ohn T, Ivanov P, Tisdale S, Anderson P (April 2010). "eIF5A promotes translation elongation, polysome disassembly and stress granule assembly". PLOS ONE. 5 (4): e9942. Bibcode:2010PLoSO...5.9942L. doi:10.1371/journal.pone.0009942. PMC 2848580. PMID 20376341.
  102. ^ Kim JA, Jayabalan AK, Kothandan VK, Mariappan R, Kee Y, Ohn T (August 2016). "Identification of Neuregulin-2 as a novel stress granule component". BMB Reports. 49 (8): 449–454. doi:10.5483/BMBRep.2016.49.8.090. PMC 5070733. PMID 27345716.
  103. ^ Dammer EB, Fallini C, Gozal YM, Duong DM, Rossoll W, Xu P, et al. (2012). "Coaggregation of RNA-binding proteins in a model of TDP-43 proteinopathy with selective RGG motif methylation and a role for RRM1 ubiquitination". PLOS ONE. 7 (6): e38658. Bibcode:2012PLoSO...738658D. doi:10.1371/journal.pone.0038658. PMC 3380899. PMID 22761693.
  104. Jongjitwimol J, Baldock RA, Morley SJ, Watts FZ (June 2016). "Sumoylation of eIF4A2 affects stress granule formation". Journal of Cell Science. 129 (12): 2407–2415. doi:10.1242/jcs.184614. PMC 4920252. PMID 27160682.
  105. ^ Kim SH, Dong WK, Weiler IJ, Greenough WT (March 2006). "Fragile X mental retardation protein shifts between polyribosomes and stress granules after neuronal injury by arsenite stress or in vivo hippocampal electrode insertion". The Journal of Neuroscience. 26 (9): 2413–2418. doi:10.1523/JNEUROSCI.3680-05.2006. PMC 6793656. PMID 16510718.
  106. ^ Mazroui R, Di Marco S, Kaufman RJ, Gallouzi IE (July 2007). "Inhibition of the ubiquitin-proteasome system induces stress granule formation". Molecular Biology of the Cell. 18 (7): 2603–2618. doi:10.1091/mbc.E06-12-1079. PMC 1924830. PMID 17475769.
  107. ^ Frydryskova K, Masek T, Borcin K, Mrvova S, Venturi V, Pospisek M (August 2016). "Distinct recruitment of human eIF4E isoforms to processing bodies and stress granules". BMC Molecular Biology. 17 (1): 21. doi:10.1186/s12867-016-0072-x. PMC 5006505. PMID 27578149.
  108. ^ Battle DJ, Kasim M, Wang J, Dreyfuss G (September 2007). "SMN-independent subunits of the SMN complex. Identification of a small nuclear ribonucleoprotein assembly intermediate". The Journal of Biological Chemistry. 282 (38): 27953–27959. doi:10.1074/jbc.M702317200. PMID 17640873.
  109. ^ Kim WJ, Back SH, Kim V, Ryu I, Jang SK (March 2005). "Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions". Molecular and Cellular Biology. 25 (6): 2450–2462. doi:10.1128/MCB.25.6.2450-2462.2005. PMC 1061607. PMID 15743837.
  110. ^ Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M (November 2008). "Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways". Nature Cell Biology. 10 (11): 1324–1332. doi:10.1038/ncb1791. PMID 18836437. S2CID 21242075.
  111. Gallouzi IE, Brennan CM, Stenberg MG, Swanson MS, Eversole A, Maizels N, et al. (March 2000). "HuR binding to cytoplasmic mRNA is perturbed by heat shock". Proceedings of the National Academy of Sciences of the United States of America. 97 (7): 3073–3078. Bibcode:2000PNAS...97.3073G. doi:10.1073/pnas.97.7.3073. PMC 16194. PMID 10737787.
  112. ^ Thomas MG, Martinez Tosar LJ, Loschi M, Pasquini JM, Correale J, Kindler S, et al. (January 2005). "Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes". Molecular Biology of the Cell. 16 (1): 405–420. doi:10.1091/mbc.E04-06-0516. PMC 539183. PMID 15525674.
  113. ^ Colombrita C, Zennaro E, Fallini C, Weber M, Sommacal A, Buratti E, et al. (November 2009). "TDP-43 is recruited to stress granules in conditions of oxidative insult". Journal of Neurochemistry. 111 (4): 1051–1061. doi:10.1111/j.1471-4159.2009.06383.x. PMID 19765185. S2CID 8630114.
  114. ^ Meyerowitz J, Parker SJ, Vella LJ, Ng DC, Price KA, Liddell JR, et al. (August 2011). "C-Jun N-terminal kinase controls TDP-43 accumulation in stress granules induced by oxidative stress". Molecular Neurodegeneration. 6: 57. doi:10.1186/1750-1326-6-57. PMC 3162576. PMID 21819629.
  115. Burry RW, Smith CL (October 2006). "HuD distribution changes in response to heat shock but not neurotrophic stimulation". The Journal of Histochemistry and Cytochemistry. 54 (10): 1129–1138. doi:10.1369/jhc.6A6979.2006. PMC 3957809. PMID 16801526.
  116. Nawaz MS, Vik ES, Berges N, Fladeby C, Bjørås M, Dalhus B, et al. (October 2016). "Regulation of Human Endonuclease V Activity and Relocalization to Cytoplasmic Stress Granules". The Journal of Biological Chemistry. 291 (41): 21786–21801. doi:10.1074/jbc.M116.730911. PMC 5076846. PMID 27573237.
  117. ^ Andersson MK, Ståhlberg A, Arvidsson Y, Olofsson A, Semb H, Stenman G, et al. (July 2008). "The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response". BMC Cell Biology. 9: 37. doi:10.1186/1471-2121-9-37. PMC 2478660. PMID 18620564.
  118. ^ Neumann M, Bentmann E, Dormann D, Jawaid A, DeJesus-Hernandez M, Ansorge O, et al. (September 2011). "FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations". Brain. 134 (Pt 9): 2595–2609. doi:10.1093/brain/awr201. PMC 3170539. PMID 21856723.
  119. Ozeki K, Sugiyama M, Akter KA, Nishiwaki K, Asano-Inami E, Senga T (January 2019). "FAM98A is localized to stress granules and associates with multiple stress granule-localized proteins". Molecular and Cellular Biochemistry. 451 (1–2): 107–115. doi:10.1007/s11010-018-3397-6. PMID 29992460. S2CID 49667042.
  120. ^ Mazroui R, Huot ME, Tremblay S, Filion C, Labelle Y, Khandjian EW (November 2002). "Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression". Human Molecular Genetics. 11 (24): 3007–3017. doi:10.1093/hmg/11.24.3007. PMID 12417522.
  121. ^ Dolzhanskaya N, Merz G, Denman RB (September 2006). "Oxidative stress reveals heterogeneity of FMRP granules in PC12 cell neurites". Brain Research. 1112 (1): 56–64. doi:10.1016/j.brainres.2006.07.026. PMID 16919243. S2CID 41514888.
  122. ^ Blechingberg J, Luo Y, Bolund L, Damgaard CK, Nielsen AL (2012). "Gene expression responses to FUS, EWS, and TAF15 reduction and stress granule sequestration analyses identifies FET-protein non-redundant functions". PLOS ONE. 7 (9): e46251. Bibcode:2012PLoSO...746251B. doi:10.1371/journal.pone.0046251. PMC 3457980. PMID 23049996.
  123. Sama RR, Ward CL, Kaushansky LJ, Lemay N, Ishigaki S, Urano F, et al. (November 2013). "FUS/TLS assembles into stress granules and is a prosurvival factor during hyperosmolar stress". Journal of Cellular Physiology. 228 (11): 2222–2231. doi:10.1002/jcp.24395. PMC 4000275. PMID 23625794.
  124. ^ Di Salvio M, Piccinni V, Gerbino V, Mantoni F, Camerini S, Lenzi J, et al. (October 2015). "Pur-alpha functionally interacts with FUS carrying ALS-associated mutations". Cell Death & Disease. 6 (10): e1943. doi:10.1038/cddis.2015.295. PMC 4632316. PMID 26492376.
  125. Lenzi J, De Santis R, de Turris V, Morlando M, Laneve P, Calvo A, et al. (July 2015). "ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons". Disease Models & Mechanisms. 8 (7): 755–766. doi:10.1242/dmm.020099. PMC 4486861. PMID 26035390.
  126. ^ Daigle JG, Krishnamurthy K, Ramesh N, Casci I, Monaghan J, McAvoy K, et al. (April 2016). "Pur-alpha regulates cytoplasmic stress granule dynamics and ameliorates FUS toxicity". Acta Neuropathologica. 131 (4): 605–620. doi:10.1007/s00401-015-1530-0. PMC 4791193. PMID 26728149.
  127. Lo Bello M, Di Fini F, Notaro A, Spataro R, Conforti FL, La Bella V (2017-10-17). "ALS-Related Mutant FUS Protein Is Mislocalized to Cytoplasm and Is Recruited into Stress Granules of Fibroblasts from Asymptomatic FUS P525L Mutation Carriers". Neuro-Degenerative Diseases. 17 (6): 292–303. doi:10.1159/000480085. PMID 29035885. S2CID 40561105.
  128. Marrone L, Poser I, Casci I, Japtok J, Reinhardt P, Janosch A, et al. (February 2018). "Isogenic FUS-eGFP iPSC Reporter Lines Enable Quantification of FUS Stress Granule Pathology that Is Rescued by Drugs Inducing Autophagy". Stem Cell Reports. 10 (2): 375–389. doi:10.1016/j.stemcr.2017.12.018. PMC 5857889. PMID 29358088.
  129. ^ Hofmann I, Casella M, Schnölzer M, Schlechter T, Spring H, Franke WW (March 2006). "Identification of the junctional plaque protein plakophilin 3 in cytoplasmic particles containing RNA-binding proteins and the recruitment of plakophilins 1 and 3 to stress granules". Molecular Biology of the Cell. 17 (3): 1388–1398. doi:10.1091/mbc.E05-08-0708. PMC 1382326. PMID 16407409.
  130. Tourrière H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E, et al. (November 2023). "The RasGAP-associated endoribonuclease G3BP mediates stress granule assembly". The Journal of Cell Biology. 222 (11). doi:10.1083/jcb.200212128072023new. PMC 10482220. PMID 37672657.
  131. ^ Hua Y, Zhou J (January 2004). "Rpp20 interacts with SMN and is re-distributed into SMN granules in response to stress". Biochemical and Biophysical Research Communications. 314 (1): 268–276. doi:10.1016/j.bbrc.2003.12.084. PMID 14715275.
  132. ^ Kwon S, Zhang Y, Matthias P (December 2007). "The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response". Genes & Development. 21 (24): 3381–3394. doi:10.1101/gad.461107. PMC 2113037. PMID 18079183.
  133. ^ Tsai WC, Reineke LC, Jain A, Jung SY, Lloyd RE (November 2017). "Histone arginine demethylase JMJD6 is linked to stress granule assembly through demethylation of the stress granule-nucleating protein G3BP1". The Journal of Biological Chemistry. 292 (46): 18886–18896. doi:10.1074/jbc.M117.800706. PMC 5704473. PMID 28972166.
  134. ^ Kobayashi T, Winslow S, Sunesson L, Hellman U, Larsson C (2012). "PKCα binds G3BP2 and regulates stress granule formation following cellular stress". PLOS ONE. 7 (4): e35820. Bibcode:2012PLoSO...735820K. doi:10.1371/journal.pone.0035820. PMC 3335008. PMID 22536444.
  135. Matsuki H, Takahashi M, Higuchi M, Makokha GN, Oie M, Fujii M (February 2013). "Both G3BP1 and G3BP2 contribute to stress granule formation". Genes to Cells. 18 (2): 135–146. doi:10.1111/gtc.12023. PMID 23279204. S2CID 11859927.
  136. Folkmann AW, Wente SR (April 2015). "Cytoplasmic hGle1A regulates stress granules by modulation of translation". Molecular Biology of the Cell. 26 (8): 1476–1490. doi:10.1091/mbc.E14-11-1523. PMC 4395128. PMID 25694449.
  137. ^ Zhang K, Daigle JG, Cunningham KM, Coyne AN, Ruan K, Grima JC, et al. (May 2018). "Stress Granule Assembly Disrupts Nucleocytoplasmic Transport". Cell. 173 (4): 958–971.e17. doi:10.1016/j.cell.2018.03.025. PMC 6083872. PMID 29628143.
  138. ^ Tsai NP, Ho PC, Wei LN (March 2008). "Regulation of stress granule dynamics by Grb7 and FAK signalling pathway". The EMBO Journal. 27 (5): 715–726. doi:10.1038/emboj.2008.19. PMC 2265756. PMID 18273060.
  139. ^ Krisenko MO, Higgins RL, Ghosh S, Zhou Q, Trybula JS, Wang WH, et al. (November 2015). "Syk Is Recruited to Stress Granules and Promotes Their Clearance through Autophagy". The Journal of Biological Chemistry. 290 (46): 27803–27815. doi:10.1074/jbc.M115.642900. PMC 4646026. PMID 26429917.
  140. Grousl T, Ivanov P, Malcova I, Pompach P, Frydlova I, Slaba R, et al. (2013). "Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae". PLOS ONE. 8 (2): e57083. Bibcode:2013PLoSO...857083G. doi:10.1371/journal.pone.0057083. PMC 3581570. PMID 23451152.
  141. Gonçalves K, Bressan GC, Saito A, Morello LG, Zanchin NI, Kobarg J (August 2011). "Evidence for the association of the human regulatory protein Ki-1/57 with the translational machinery". FEBS Letters. 585 (16): 2556–2560. Bibcode:2011FEBSL.585.2556G. doi:10.1016/j.febslet.2011.07.010. PMID 21771594.
  142. ^ Guil S, Long JC, Cáceres JF (August 2006). "hnRNP A1 relocalization to the stress granules reflects a role in the stress response". Molecular and Cellular Biology. 26 (15): 5744–5758. doi:10.1128/MCB.00224-06. PMC 1592774. PMID 16847328.
  143. ^ Dewey CM, Cenik B, Sephton CF, Dries DR, Mayer P, Good SK, et al. (March 2011). "TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor". Molecular and Cellular Biology. 31 (5): 1098–1108. doi:10.1128/MCB.01279-10. PMC 3067820. PMID 21173160.
  144. Papadopoulou C, Ganou V, Patrinou-Georgoula M, Guialis A (January 2013). "HuR-hnRNP interactions and the effect of cellular stress". Molecular and Cellular Biochemistry. 372 (1–2): 137–147. doi:10.1007/s11010-012-1454-0. PMID 22983828. S2CID 16261648.
  145. Naruse H, Ishiura H, Mitsui J, Date H, Takahashi Y, Matsukawa T, et al. (January 2018). "Molecular epidemiological study of familial amyotrophic lateral sclerosis in Japanese population by whole-exome sequencing and identification of novel HNRNPA1 mutation". Neurobiology of Aging. 61: 255.e9–255.e16. doi:10.1016/j.neurobiolaging.2017.08.030. PMID 29033165. S2CID 38838445.
  146. ^ McDonald KK, Aulas A, Destroismaisons L, Pickles S, Beleac E, Camu W, et al. (April 2011). "TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1". Human Molecular Genetics. 20 (7): 1400–1410. doi:10.1093/hmg/ddr021. hdl:1866/5134. PMID 21257637.
  147. ^ Fukuda T, Naiki T, Saito M, Irie K (February 2009). "hnRNP K interacts with RNA binding motif protein 42 and functions in the maintenance of cellular ATP level during stress conditions". Genes to Cells. 14 (2): 113–128. doi:10.1111/j.1365-2443.2008.01256.x. PMID 19170760. S2CID 205293176.
  148. ^ Kedersha NL, Gupta M, Li W, Miller I, Anderson P (December 1999). "RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules". The Journal of Cell Biology. 147 (7): 1431–1442. doi:10.1083/jcb.147.7.1431. PMC 2174242. PMID 10613902.
  149. Ganassi M, Mateju D, Bigi I, Mediani L, Poser I, Lee HO, et al. (September 2016). "A Surveillance Function of the HSPB8-BAG3-HSP70 Chaperone Complex Ensures Stress Granule Integrity and Dynamism". Molecular Cell. 63 (5): 796–810. doi:10.1016/j.molcel.2016.07.021. hdl:11380/1127998. PMID 27570075.
  150. Mahboubi H, Moujaber O, Kodiha M, Stochaj U (March 2020). "The Co-Chaperone HspBP1 Is a Novel Component of Stress Granules that Regulates Their Formation". Cells. 9 (4): 825. doi:10.3390/cells9040825. PMC 7226807. PMID 32235396.
  151. Wen X, Huang X, Mok BW, Chen Y, Zheng M, Lau SY, et al. (April 2014). "NF90 exerts antiviral activity through regulation of PKR phosphorylation and stress granules in infected cells". Journal of Immunology. 192 (8): 3753–3764. doi:10.4049/jimmunol.1302813. PMID 24623135.
  152. Brehm MA, Schenk TM, Zhou X, Fanick W, Lin H, Windhorst S, et al. (December 2007). "Intracellular localization of human Ins(1,3,4,5,6)P5 2-kinase". The Biochemical Journal. 408 (3): 335–345. doi:10.1042/BJ20070382. PMC 2267366. PMID 17705785.
  153. Piotrowska J, Hansen SJ, Park N, Jamka K, Sarnow P, Gustin KE (April 2010). "Stable formation of compositionally unique stress granules in virus-infected cells". Journal of Virology. 84 (7): 3654–3665. doi:10.1128/JVI.01320-09. PMC 2838110. PMID 20106928.
  154. Henao-Mejia J, He JJ (November 2009). "Sam68 relocalization into stress granules in response to oxidative stress through complexing with TIA-1". Experimental Cell Research. 315 (19): 3381–3395. doi:10.1016/j.yexcr.2009.07.011. PMC 2783656. PMID 19615357.
  155. Zhang H, Chen N, Li P, Pan Z, Ding Y, Zou D, et al. (July 2016). "The nuclear protein Sam68 is recruited to the cytoplasmic stress granules during enterovirus 71 infection". Microbial Pathogenesis. 96: 58–66. doi:10.1016/j.micpath.2016.04.001. PMID 27057671.
  156. Rothé F, Gueydan C, Bellefroid E, Huez G, Kruys V (April 2006). "Identification of FUSE-binding proteins as interacting partners of TIA proteins". Biochemical and Biophysical Research Communications. 343 (1): 57–68. doi:10.1016/j.bbrc.2006.02.112. PMID 16527256.
  157. ^ Mahboubi H, Seganathy E, Kong D, Stochaj U (2013). "Identification of Novel Stress Granule Components That Are Involved in Nuclear Transport". PLOS ONE. 8 (6): e68356. Bibcode:2013PLoSO...868356M. doi:10.1371/journal.pone.0068356. PMC 3694919. PMID 23826389.
  158. ^ Fujimura K, Suzuki T, Yasuda Y, Murata M, Katahira J, Yoneda Y (July 2010). "Identification of importin alpha1 as a novel constituent of RNA stress granules". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1803 (7): 865–871. doi:10.1016/j.bbamcr.2010.03.020. PMID 20362631.
  159. Yang R, Gaidamakov SA, Xie J, Lee J, Martino L, Kozlov G, et al. (February 2011). "La-related protein 4 binds poly(A), interacts with the poly(A)-binding protein MLLE domain via a variant PAM2w motif, and can promote mRNA stability". Molecular and Cellular Biology. 31 (3): 542–556. doi:10.1128/MCB.01162-10. PMC 3028612. PMID 21098120.
  160. ^ Balzer E, Moss EG (January 2007). "Localization of the developmental timing regulator Lin28 to mRNP complexes, P-bodies and stress granules". RNA Biology. 4 (1): 16–25. doi:10.4161/rna.4.1.4364. PMID 17617744.
  161. ^ Ingelfinger D, Arndt-Jovin DJ, Lührmann R, Achsel T (December 2002). "The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci". RNA. 8 (12): 1489–1501. doi:10.1017/S1355838202021726. PMC 1370355. PMID 12515382.
  162. Yang WH, Yu JH, Gulick T, Bloch KD, Bloch DB (April 2006). "RNA-associated protein 55 (RAP55) localizes to mRNA processing bodies and stress granules". RNA. 12 (4): 547–554. doi:10.1261/rna.2302706. PMC 1421083. PMID 16484376.
  163. ^ Kawahara H, Imai T, Imataka H, Tsujimoto M, Matsumoto K, Okano H (May 2008). "Neural RNA-binding protein Musashi1 inhibits translation initiation by competing with eIF4G for PABP". The Journal of Cell Biology. 181 (4): 639–653. doi:10.1083/jcb.200708004. PMC 2386104. PMID 18490513.
  164. Yuan L, Xiao Y, Zhou Q, Yuan D, Wu B, Chen G, et al. (January 2014). "Proteomic analysis reveals that MAEL, a component of nuage, interacts with stress granule proteins in cancer cells". Oncology Reports. 31 (1): 342–350. doi:10.3892/or.2013.2836. PMID 24189637.
  165. Seguin SJ, Morelli FF, Vinet J, Amore D, De Biasi S, Poletti A, et al. (December 2014). "Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly". Cell Death and Differentiation. 21 (12): 1838–1851. doi:10.1038/cdd.2014.103. PMC 4227144. PMID 25034784.
  166. Ryu HH, Jun MH, Min KJ, Jang DJ, Lee YS, Kim HK, et al. (December 2014). "Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons". Neurobiology of Aging. 35 (12): 2822–2831. doi:10.1016/j.neurobiolaging.2014.07.026. PMID 25216585. S2CID 36917292.
  167. ^ Wasserman T, Katsenelson K, Daniliuc S, Hasin T, Choder M, Aronheim A (January 2010). "A novel c-Jun N-terminal kinase (JNK)-binding protein WDR62 is recruited to stress granules and mediates a nonclassical JNK activation". Molecular Biology of the Cell. 21 (1): 117–130. doi:10.1091/mbc.E09-06-0512. PMC 2801705. PMID 19910486.
  168. ^ Courchet J, Buchet-Poyau K, Potemski A, Brès A, Jariel-Encontre I, Billaud M (November 2008). "Interaction with 14-3-3 adaptors regulates the sorting of hMex-3B RNA-binding protein to distinct classes of RNA granules". The Journal of Biological Chemistry. 283 (46): 32131–32142. doi:10.1074/jbc.M802927200. PMID 18779327.
  169. Kuniyoshi K, Takeuchi O, Pandey S, Satoh T, Iwasaki H, Akira S, et al. (April 2014). "Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity". Proceedings of the National Academy of Sciences of the United States of America. 111 (15): 5646–5651. Bibcode:2014PNAS..111.5646K. doi:10.1073/pnas.1401674111. PMC 3992669. PMID 24706898.
  170. MacNair L, Xiao S, Miletic D, Ghani M, Julien JP, Keith J, et al. (January 2016). "MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis". Brain. 139 (Pt 1): 86–100. doi:10.1093/brain/awv308. PMID 26525917.
  171. ^ Sfakianos AP, Mellor LE, Pang YF, Kritsiligkou P, Needs H, Abou-Hamdan H, et al. (November 2018). "The mTOR-S6 kinase pathway promotes stress granule assembly". Cell Death and Differentiation. 25 (10): 1766–1780. doi:10.1038/s41418-018-0076-9. PMC 6004310. PMID 29523872.
  172. Yu C, York B, Wang S, Feng Q, Xu J, O'Malley BW (March 2007). "An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response". Molecular Cell. 25 (5): 765–778. doi:10.1016/j.molcel.2007.01.025. PMC 1864954. PMID 17349961.
  173. ^ Furukawa MT, Sakamoto H, Inoue K (April 2015). "Interaction and colocalization of HERMES/RBPMS with NonO, PSF, and G3BP1 in neuronal cytoplasmic RNP granules in mouse retinal line cells". Genes to Cells. 20 (4): 257–266. doi:10.1111/gtc.12224. PMID 25651939. S2CID 22403884.
  174. Kang JS, Hwang YS, Kim LK, Lee S, Lee WB, Kim-Ha J, et al. (March 2018). "OASL1 Traps Viral RNAs in Stress Granules to Promote Antiviral Responses". Molecules and Cells. 41 (3): 214–223. doi:10.14348/molcells.2018.2293. PMC 5881095. PMID 29463066.
  175. Wehner KA, Schütz S, Sarnow P (April 2010). "OGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress". Molecular and Cellular Biology. 30 (8): 2006–2016. doi:10.1128/MCB.01350-09. PMC 2849474. PMID 20154146.
  176. Bravard A, Campalans A, Vacher M, Gouget B, Levalois C, Chevillard S, et al. (March 2010). "Inactivation by oxidation and recruitment into stress granules of hOGG1 but not APE1 in human cells exposed to sub-lethal concentrations of cadmium". Mutation Research. 685 (1–2): 61–69. Bibcode:2010MRFMM.685...61B. doi:10.1016/j.mrfmmm.2009.09.013. PMID 19800894.
  177. Das R, Schwintzer L, Vinopal S, Aguado Roca E, Sylvester M, Oprisoreanu AM, et al. (June 2019). "New roles for the de-ubiquitylating enzyme OTUD4 in an RNA-protein network and RNA granules". Journal of Cell Science. 132 (12): jcs229252. doi:10.1242/jcs.229252. PMC 6602300. PMID 31138677.
  178. ^ Leung AK, Vyas S, Rood JE, Bhutkar A, Sharp PA, Chang P (May 2011). "Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm". Molecular Cell. 42 (4): 489–499. doi:10.1016/j.molcel.2011.04.015. PMC 3898460. PMID 21596313.
  179. ^ Repici M, Hassanjani M, Maddison DC, Garção P, Cimini S, Patel B, et al. (January 2019). "The Parkinson's Disease-Linked Protein DJ-1 Associates with Cytoplasmic mRNP Granules During Stress and Neurodegeneration". Molecular Neurobiology. 56 (1): 61–77. doi:10.1007/s12035-018-1084-y. PMC 6334738. PMID 29675578.
  180. Catara G, Grimaldi G, Schembri L, Spano D, Turacchio G, Lo Monte M, et al. (October 2017). "PARP1-produced poly-ADP-ribose causes the PARP12 translocation to stress granules and impairment of Golgi complex functions". Scientific Reports. 7 (1): 14035. Bibcode:2017NatSR...714035C. doi:10.1038/s41598-017-14156-8. PMC 5656619. PMID 29070863.
  181. Bai Y, Dong Z, Shang Q, Zhao H, Wang L, Guo C, et al. (2016). "Pdcd4 Is Involved in the Formation of Stress Granule in Response to Oxidized Low-Density Lipoprotein or High-Fat Diet". PLOS ONE. 11 (7): e0159568. Bibcode:2016PLoSO..1159568B. doi:10.1371/journal.pone.0159568. PMC 4959751. PMID 27454120.
  182. Kunde SA, Musante L, Grimme A, Fischer U, Müller E, Wanker EE, et al. (December 2011). "The X-chromosome-linked intellectual disability protein PQBP1 is a component of neuronal RNA granules and regulates the appearance of stress granules". Human Molecular Genetics. 20 (24): 4916–4931. doi:10.1093/hmg/ddr430. PMID 21933836.
  183. ^ Turakhiya A, Meyer SR, Marincola G, Böhm S, Vanselow JT, Schlosser A, et al. (June 2018). "ZFAND1 Recruits p97 and the 26S Proteasome to Promote the Clearance of Arsenite-Induced Stress Granules". Molecular Cell. 70 (5): 906–919.e7. doi:10.1016/j.molcel.2018.04.021. PMID 29804830.
  184. Yang F, Peng Y, Murray EL, Otsuka Y, Kedersha N, Schoenberg DR (December 2006). "Polysome-bound endonuclease PMR1 is targeted to stress granules via stress-specific binding to TIA-1". Molecular and Cellular Biology. 26 (23): 8803–8813. doi:10.1128/MCB.00090-06. PMC 1636822. PMID 16982678.
  185. ^ Takahashi M, Higuchi M, Matsuki H, Yoshita M, Ohsawa T, Oie M, et al. (February 2013). "Stress granules inhibit apoptosis by reducing reactive oxygen species production". Molecular and Cellular Biology. 33 (4): 815–829. doi:10.1128/MCB.00763-12. PMC 3571346. PMID 23230274.
  186. ^ Park C, Choi S, Kim YE, Lee S, Park SH, Adelstein RS, et al. (September 2017). "Stress Granules Contain Rbfox2 with Cell Cycle-related mRNAs". Scientific Reports. 7 (1): 11211. Bibcode:2017NatSR...711211P. doi:10.1038/s41598-017-11651-w. PMC 5593835. PMID 28894257.
  187. ^ Kucherenko MM, Shcherbata HR (January 2018). "Stress-dependent miR-980 regulation of Rbfox1/A2bp1 promotes ribonucleoprotein granule formation and cell survival". Nature Communications. 9 (1): 312. Bibcode:2018NatCo...9..312K. doi:10.1038/s41467-017-02757-w. PMC 5778076. PMID 29358748.
  188. Lin JC, Hsu M, Tarn WY (February 2007). "Cell stress modulates the function of splicing regulatory protein RBM4 in translation control". Proceedings of the National Academy of Sciences of the United States of America. 104 (7): 2235–2240. Bibcode:2007PNAS..104.2235L. doi:10.1073/pnas.0611015104. PMC 1893002. PMID 17284590.
  189. ^ Bakkar N, Kousari A, Kovalik T, Li Y, Bowser R (July 2015). "RBM45 Modulates the Antioxidant Response in Amyotrophic Lateral Sclerosis through Interactions with KEAP1". Molecular and Cellular Biology. 35 (14): 2385–2399. doi:10.1128/MCB.00087-15. PMC 4475920. PMID 25939382.
  190. ^ Li Y, Collins M, Geiser R, Bakkar N, Riascos D, Bowser R (September 2015). "RBM45 homo-oligomerization mediates association with ALS-linked proteins and stress granules". Scientific Reports. 5: 14262. Bibcode:2015NatSR...514262L. doi:10.1038/srep14262. PMC 4585734. PMID 26391765.
  191. Farazi TA, Leonhardt CS, Mukherjee N, Mihailovic A, Li S, Max KE, et al. (July 2014). "Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets". RNA. 20 (7): 1090–1102. doi:10.1261/rna.045005.114. PMC 4114688. PMID 24860013.
  192. ^ Athanasopoulos V, Barker A, Yu D, Tan AH, Srivastava M, Contreras N, et al. (May 2010). "The ROQUIN family of proteins localizes to stress granules via the ROQ domain and binds target mRNAs". The FEBS Journal. 277 (9): 2109–2127. doi:10.1111/j.1742-4658.2010.07628.x. PMID 20412057. S2CID 13387108.
  193. Eisinger-Mathason TS, Andrade J, Groehler AL, Clark DE, Muratore-Schroeder TL, Pasic L, et al. (September 2008). "Codependent functions of RSK2 and the apoptosis-promoting factor TIA-1 in stress granule assembly and cell survival". Molecular Cell. 31 (5): 722–736. doi:10.1016/j.molcel.2008.06.025. PMC 2654589. PMID 18775331.
  194. ^ Baez MV, Boccaccio GL (December 2005). "Mammalian Smaug is a translational repressor that forms cytoplasmic foci similar to stress granules". The Journal of Biological Chemistry. 280 (52): 43131–43140. doi:10.1074/jbc.M508374200. hdl:20.500.12110/paper_00219258_v280_n52_p43131_Baez. PMID 16221671.
  195. Lee YJ, Wei HM, Chen LY, Li C (January 2014). "Localization of SERBP1 in stress granules and nucleoli". The FEBS Journal. 281 (1): 352–364. doi:10.1111/febs.12606. PMID 24205981. S2CID 20464730.
  196. Omer A, Patel D, Lian XJ, Sadek J, Di Marco S, Pause A, et al. (May 2018). "Stress granules counteract senescence by sequestration of PAI-1". EMBO Reports. 19 (5): e44722. doi:10.15252/embr.201744722. PMC 5934773. PMID 29592859.
  197. Jedrusik-Bode M, Studencka M, Smolka C, Baumann T, Schmidt H, Kampf J, et al. (November 2013). "The sirtuin SIRT6 regulates stress granule formation in C. elegans and mammals". Journal of Cell Science. 126 (Pt 22): 5166–5177. doi:10.1242/jcs.130708. hdl:11858/00-001M-0000-0014-C701-9. PMID 24013546.
  198. ^ Brown JA, Roberts TL, Richards R, Woods R, Birrell G, Lim YC, et al. (November 2011). "A novel role for hSMG-1 in stress granule formation". Molecular and Cellular Biology. 31 (22): 4417–4429. doi:10.1128/MCB.05987-11. PMC 3209244. PMID 21911475.
  199. ^ Hua Y, Zhou J (August 2004). "Survival motor neuron protein facilitates assembly of stress granules". FEBS Letters. 572 (1–3): 69–74. Bibcode:2004FEBSL.572...69H. doi:10.1016/j.febslet.2004.07.010. PMID 15304326. S2CID 27599172.
  200. Zou T, Yang X, Pan D, Huang J, Sahin M, Zhou J (May 2011). "SMN deficiency reduces cellular ability to form stress granules, sensitizing cells to stress". Cellular and Molecular Neurobiology. 31 (4): 541–550. doi:10.1007/s10571-011-9647-8. PMID 21234798. S2CID 8763933.
  201. Gao X, Fu X, Song J, Zhang Y, Cui X, Su C, et al. (March 2015). "Poly(A)(+) mRNA-binding protein Tudor-SN regulates stress granules aggregation dynamics". The FEBS Journal. 282 (5): 874–890. doi:10.1111/febs.13186. PMID 25559396. S2CID 27524910.
  202. Chang YW, Huang YS (2014). "Arsenite-activated JNK signaling enhances CPEB4-Vinexin interaction to facilitate stress granule assembly and cell survival". PLOS ONE. 9 (9): e107961. Bibcode:2014PLoSO...9j7961C. doi:10.1371/journal.pone.0107961. PMC 4169592. PMID 25237887.
  203. Zhu CH, Kim J, Shay JW, Wright WE (2008). "SGNP: an essential Stress Granule/Nucleolar Protein potentially involved in 5.8s rRNA processing/transport". PLOS ONE. 3 (11): e3716. Bibcode:2008PLoSO...3.3716Z. doi:10.1371/journal.pone.0003716. PMC 2579992. PMID 19005571.
  204. Berger A, Ivanova E, Gareau C, Scherrer A, Mazroui R, Strub K (2014). "Direct binding of the Alu binding protein dimer SRP9/14 to 40S ribosomal subunits promotes stress granule formation and is regulated by Alu RNA". Nucleic Acids Research. 42 (17): 11203–11217. doi:10.1093/nar/gku822. PMC 4176187. PMID 25200073.
  205. Delestienne N, Wauquier C, Soin R, Dierick JF, Gueydan C, Kruys V (June 2010). "The splicing factor ASF/SF2 is associated with TIA-1-related/TIA-1-containing ribonucleoproteic complexes and contributes to post-transcriptional repression of gene expression". The FEBS Journal. 277 (11): 2496–2514. doi:10.1111/j.1742-4658.2010.07664.x. PMID 20477871. S2CID 24332251.
  206. Fitzgerald KD, Semler BL (September 2013). "Poliovirus infection induces the co-localization of cellular protein SRp20 with TIA-1, a cytoplasmic stress granule protein". Virus Research. 176 (1–2): 223–231. doi:10.1016/j.virusres.2013.06.012. PMC 3742715. PMID 23830997.
  207. Kano S, Nishida K, Kurebe H, Nishiyama C, Kita K, Akaike Y, et al. (February 2014). "Oxidative stress-inducible truncated serine/arginine-rich splicing factor 3 regulates interleukin-8 production in human colon cancer cells". American Journal of Physiology. Cell Physiology. 306 (3): C250 – C262. doi:10.1152/ajpcell.00091.2013. PMID 24284797. S2CID 17352565.
  208. Jayabalan AK, Sanchez A, Park RY, Yoon SP, Kang GY, Baek JH, et al. (July 2016). "NEDDylation promotes stress granule assembly". Nature Communications. 7: 12125. Bibcode:2016NatCo...712125J. doi:10.1038/ncomms12125. PMC 4935812. PMID 27381497.
  209. ^ Kukharsky MS, Quintiero A, Matsumoto T, Matsukawa K, An H, Hashimoto T, et al. (April 2015). "Calcium-responsive transactivator (CREST) protein shares a set of structural and functional traits with other proteins associated with amyotrophic lateral sclerosis". Molecular Neurodegeneration. 10: 20. doi:10.1186/s13024-015-0014-y. PMC 4428507. PMID 25888396.
  210. Thomas MG, Martinez Tosar LJ, Desbats MA, Leishman CC, Boccaccio GL (February 2009). "Mammalian Staufen 1 is recruited to stress granules and impairs their assembly". Journal of Cell Science. 122 (Pt 4): 563–573. doi:10.1242/jcs.038208. PMC 2714435. PMID 19193871.
  211. Quaresma AJ, Bressan GC, Gava LM, Lanza DC, Ramos CH, Kobarg J (April 2009). "Human hnRNP Q re-localizes to cytoplasmic granules upon PMA, thapsigargin, arsenite and heat-shock treatments". Experimental Cell Research. 315 (6): 968–980. doi:10.1016/j.yexcr.2009.01.012. PMID 19331829.
  212. Liu-Yesucevitz L, Bilgutay A, Zhang YJ, Vanderweyde T, Vanderwyde T, Citro A, et al. (October 2010). "Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue". PLOS ONE. 5 (10): e13250. Bibcode:2010PLoSO...513250L. doi:10.1371/journal.pone.0013250. PMC 2952586. PMID 20948999.
  213. Freibaum BD, Chitta RK, High AA, Taylor JP (February 2010). "Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery". Journal of Proteome Research. 9 (2): 1104–1120. doi:10.1021/pr901076y. PMC 2897173. PMID 20020773.
  214. ^ Mackenzie IR, Nicholson AM, Sarkar M, Messing J, Purice MD, Pottier C, et al. (August 2017). "TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics". Neuron (Submitted manuscript). 95 (4): 808–816.e9. doi:10.1016/j.neuron.2017.07.025. PMC 5576574. PMID 28817800.
  215. Khalfallah Y, Kuta R, Grasmuck C, Prat A, Durham HD, Vande Velde C (May 2018). "TDP-43 regulation of stress granule dynamics in neurodegenerative disease-relevant cell types". Scientific Reports. 8 (1): 7551. Bibcode:2018NatSR...8.7551K. doi:10.1038/s41598-018-25767-0. PMC 5953947. PMID 29765078.
  216. Linder B, Plöttner O, Kroiss M, Hartmann E, Laggerbauer B, Meister G, et al. (October 2008). "Tdrd3 is a novel stress granule-associated protein interacting with the Fragile-X syndrome protein FMRP". Human Molecular Genetics. 17 (20): 3236–3246. doi:10.1093/hmg/ddn219. PMID 18664458.
  217. ^ Stoll G, Pietiläinen OP, Linder B, Suvisaari J, Brosi C, Hennah W, et al. (September 2013). "Deletion of TOP3β, a component of FMRP-containing mRNPs, contributes to neurodevelopmental disorders". Nature Neuroscience. 16 (9): 1228–1237. doi:10.1038/nn.3484. PMC 3986889. PMID 23912948.
  218. ^ Narayanan N, Wang Z, Li L, Yang Y (2017). "Arginine methylation of USP9X promotes its interaction with TDRD3 and its anti-apoptotic activities in breast cancer cells". Cell Discovery. 3: 16048. doi:10.1038/celldisc.2016.48. PMC 5206711. PMID 28101374.
  219. Iannilli F, Zalfa F, Gartner A, Bagni C, Dotti CG (2013). "Cytoplasmic TERT Associates to RNA Granules in Fully Mature Neurons: Role in the Translational Control of the Cell Cycle Inhibitor p15INK4B". PLOS ONE. 8 (6): e66602. Bibcode:2013PLoSO...866602I. doi:10.1371/journal.pone.0066602. PMC 3688952. PMID 23825548.
  220. Lee Y, Jonson PH, Sarparanta J, Palmio J, Sarkar M, Vihola A, et al. (March 2018). "TIA1 variant drives myodegeneration in multisystem proteinopathy with SQSTM1 mutations". The Journal of Clinical Investigation. 128 (3): 1164–1177. doi:10.1172/JCI97103. PMC 5824866. PMID 29457785.
  221. Chang WL, Tarn WY (October 2009). "A role for transportin in deposition of TTP to cytoplasmic RNA granules and mRNA decay". Nucleic Acids Research. 37 (19): 6600–6612. doi:10.1093/nar/gkp717. PMC 2770677. PMID 19729507.
  222. Guo L, Kim HJ, Wang H, Monaghan J, Freyermuth F, Sung JC, et al. (April 2018). "Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like Domains". Cell. 173 (3): 677–692.e20. doi:10.1016/j.cell.2018.03.002. PMC 5911940. PMID 29677512.
  223. Huang L, Wang Z, Narayanan N, Yang Y (April 2018). "Arginine methylation of the C-terminus RGG motif promotes TOP3B topoisomerase activity and stress granule localization". Nucleic Acids Research. 46 (6): 3061–3074. doi:10.1093/nar/gky103. PMC 5888246. PMID 29471495.
  224. Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, et al. (August 2010). "RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage". Genes & Development. 24 (15): 1590–1595. doi:10.1101/gad.586710. PMC 2912555. PMID 20679393.
  225. Huang C, Chen Y, Dai H, Zhang H, Xie M, Zhang H, et al. (January 2020). "UBAP2L arginine methylation by PRMT1 modulates stress granule assembly". Cell Death and Differentiation. 27 (1): 227–241. doi:10.1038/s41418-019-0350-5. PMC 7205891. PMID 31114027.
  226. Cirillo L, Cieren A, Barbieri S, Khong A, Schwager F, Parker R, et al. (February 2020). "UBAP2L Forms Distinct Cores that Act in Nucleating Stress Granules Upstream of G3BP1". Current Biology. 30 (4): 698–707.e6. Bibcode:2020CBio...30E.698C. doi:10.1016/j.cub.2019.12.020. PMID 31956030. S2CID 210597276.
  227. Dao TP, Kolaitis RM, Kim HJ, O'Donovan K, Martyniak B, Colicino E, et al. (March 2018). "Ubiquitin Modulates Liquid-Liquid Phase Separation of UBQLN2 via Disruption of Multivalent Interactions". Molecular Cell. 69 (6): 965–978.e6. doi:10.1016/j.molcel.2018.02.004. PMC 6181577. PMID 29526694.
  228. ^ Wang B, Maxwell BA, Joo JH, Gwon Y, Messing J, Mishra A, et al. (May 2019). "ULK1 and ULK2 Regulate Stress Granule Disassembly Through Phosphorylation and Activation of VCP/p97". Molecular Cell. 74 (4): 742–757.e8. doi:10.1016/j.molcel.2019.03.027. PMC 6859904. PMID 30979586.
  229. ^ Xie X, Matsumoto S, Endo A, Fukushima T, Kawahara H, Saeki Y, et al. (April 2018). "Deubiquitylases USP5 and USP13 are recruited to and regulate heat-induced stress granules through their deubiquitylating activities". Journal of Cell Science. 131 (8): jcs210856. doi:10.1242/jcs.210856. PMID 29567855.
  230. Buchan JR, Kolaitis RM, Taylor JP, Parker R (June 2013). "Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function". Cell. 153 (7): 1461–1474. doi:10.1016/j.cell.2013.05.037. PMC 3760148. PMID 23791177.
  231. Somasekharan SP, El-Naggar A, Leprivier G, Cheng H, Hajee S, Grunewald TG, et al. (March 2015). "YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1". The Journal of Cell Biology. 208 (7): 913–929. doi:10.1083/jcb.201411047. PMC 4384734. PMID 25800057.
  232. ^ Ries RJ, Zaccara S, Klein P, Olarerin-George A, Namkoong S, Pickering BF, et al. (July 2019). "mA enhances the phase separation potential of mRNA". Nature. 571 (7765): 424–428. doi:10.1038/s41586-019-1374-1. PMC 6662915. PMID 31292544.
  233. ^ Fu Y, Zhuang X (September 2020). "mA-binding YTHDF proteins promote stress granule formation". Nature Chemical Biology. 16 (9): 955–963. doi:10.1038/s41589-020-0524-y. PMC 7442727. PMID 32451507.
  234. Anders M, Chelysheva I, Goebel I, Trenkner T, Zhou J, Mao Y, et al. (August 2018). "Dynamic mA methylation facilitates mRNA triaging to stress granules". Life Science Alliance. 1 (4): e201800113. doi:10.26508/lsa.201800113. PMC 6238392. PMID 30456371.
  235. Stöhr N, Lederer M, Reinke C, Meyer S, Hatzfeld M, Singer RH, et al. (November 2006). "ZBP1 regulates mRNA stability during cellular stress". The Journal of Cell Biology. 175 (4): 527–534. doi:10.1083/jcb.200608071. PMC 2064588. PMID 17101699.
  236. Deigendesch N, Koch-Nolte F, Rothenburg S (2006). "ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains". Nucleic Acids Research. 34 (18): 5007–5020. doi:10.1093/nar/gkl575. PMC 1636418. PMID 16990255.
  237. Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WF, Blackwell TK, et al. (March 2004). "MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay". The EMBO Journal. 23 (6): 1313–1324. doi:10.1038/sj.emboj.7600163. PMC 381421. PMID 15014438.
  238. Holmes B, Artinian N, Anderson L, Martin J, Masri J, Cloninger C, et al. (January 2012). "Protor-2 interacts with tristetraprolin to regulate mRNA stability during stress". Cellular Signalling. 24 (1): 309–315. doi:10.1016/j.cellsig.2011.09.015. PMC 3205320. PMID 21964062.
  239. Murata T, Morita N, Hikita K, Kiuchi K, Kiuchi K, Kaneda N (February 2005). "Recruitment of mRNA-destabilizing protein TIS11 to stress granules is mediated by its zinc finger domain". Experimental Cell Research. 303 (2): 287–299. doi:10.1016/j.yexcr.2004.09.031. PMID 15652343.

Further reading

External links

Laboratories:

Category:
Stress granule Add topic