Misplaced Pages

Isotopes of tellurium

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Tellurium-104)

Isotopes of tellurium (52Te)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Te 0.09% stable
Te synth 16.78 d ε Sb
Te 2.55% stable
Te 0.89% stable
Te 4.74% stable
Te 7.07% stable
Te 18.8% stable
Te synth 9.35 h β I
Te 31.7% 2.2×10 y ββ Xe
Te synth 69.6 min β I
Te 34.1% 7.91×10 y ββ Xe
Standard atomic weight Ar°(Te)

There are 39 known isotopes and 17 nuclear isomers of tellurium (52Te), with atomic masses that range from 104 to 142. These are listed in the table below.

Naturally-occurring tellurium on Earth consists of eight isotopes. Two of these have been found to be radioactive: Te and Te undergo double beta decay with half-lives of, respectively, 2.2×10 (2.2 septillion) years (the longest half-life of all nuclides proven to be radioactive) and 8.2×10 (820 quintillion) years. The longest-lived artificial radioisotope of tellurium is Te with a half-life of about 19 days. Several nuclear isomers have longer half-lives, the longest being Te with a half-life of 154 days.

The very-long-lived radioisotopes Te and Te are the two most common isotopes of tellurium. Of elements with at least one stable isotope, only indium and rhenium likewise have a radioisotope in greater abundance than a stable one.

It has been claimed that electron capture of Te was observed, but more recent measurements of the same team have disproved this. The half-life of Te is longer than 9.2 × 10 years, and probably much longer.

Te can be used as a starting material in the production of radionuclides by a cyclotron or other particle accelerators. Some common radionuclides that can be produced from tellurium-124 are iodine-123 and iodine-124.

The short-lived isotope Te (half-life 19 seconds) is produced as a fission product in nuclear reactors. It decays, via two beta decays, to Xe, the most powerful known neutron absorber, and the cause of the iodine pit phenomenon.

With the exception of beryllium, tellurium is the second lightest element observed to have isotopes capable of undergoing alpha decay, with isotopes Te to Te being seen to undergo this mode of decay. Some lighter elements, namely those in the vicinity of Be, have isotopes with delayed alpha emission (following proton or beta emission) as a rare branch.

List of isotopes

Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Te 52 52 103.94672(34) <4 ns α Sn 0+
Te 52 53 104.94330(32) 633(66) ns α Sn (7/2+)
Te 52 54 105.93750(11) 78(11) μs α Sn 0+
Te 52 55 106.93488(11)# 3.22(9) ms α (70%) Sn 5/2+#
β (30%) Sb
Te 52 56 107.9293805(58) 2.1(1) s α (49%) Sn 0+
β (48.6%) Sb
β, p (2.4%) Sn
β, α (<0.065%) In
Te 52 57 108.9273045(47) 4.4(2) s β (86.7%) Sb (5/2+)
β, p (9.4%) Sn
α (3.9%) Sn
β, α (<0.0049%) In
Te 52 58 109.9224581(71) 18.6(8) s β Sb 0+
Te 52 59 110.9210006(69) 26.2(6) s β Sb (5/2)+
β, p (?%) Sn
Te 52 60 111.9167278(90) 2.0(2) min β Sb 0+
Te 52 61 112.915891(30) 1.7(2) min β Sb (7/2+)
Te 52 62 113.912088(26) 15.2(7) min β Sb 0+
Te 52 63 114.911902(30) 5.8(2) min β Sb 7/2+
Te 10(6) keV 6.7(4) min β Sb (1/2+)
Te 280.05(20) keV 7.5(2) μs IT Te 11/2−
Te 52 64 115.908466(26) 2.49(4) h β Sb 0+
Te 52 65 116.908646(14) 62(2) min EC (75%) Sb 1/2+
β Sb
Te 296.1(5) keV 103(3) ms IT Te (11/2−)
Te 52 66 117.905860(20) 6.00(2) d EC Sb 0+
Te 52 67 118.9064057(78) 16.05(5) h EC (97.94%) Sb 1/2+
β (2.06%) Sb
Te 260.96(5) keV 4.70(4) d EC (99.59%) Sb 11/2−
β (0.41%) Sb
Te 52 68 119.9040658(19) Observationally Stable 0+ 9(1)×10
Te 52 69 120.904945(28) 19.31(7) d β Sb 1/2+
Te 293.974(22) keV 164.7(5) d IT (88.6%) Te 11/2−
β (11.4%) Sb
Te 52 70 121.9030447(15) Stable 0+ 0.0255(12)
Te 52 71 122,9042710(15) Observationally Stable 1/2+ 0.0089(3)
Te 247.47(4) keV 119.2(1) d IT Te 11/2−
Te 52 72 123.9028183(15) Stable 0+ 0.0474(14)
Te 52 73 124.9044312(15) Stable 1/2+ 0.0707(15)
Te 144.775(8) keV 57.40(15) d IT Te 11/2−
Te 52 74 125.9033121(15) Stable 0+ 0.1884(25)
Te 52 75 126.9052270(15) 9.35(7) h β I 3/2+
Te 88.23(7) keV 106.1(7) d IT (97.86%) Te 11/2−
β (2.14%) I
Te 52 76 127.90446124(76) 2.25(9)×10 y ββ Xe 0+ 0.3174(8)
Te 2790.8(3) keV 363(27) ns IT Te (10+)
Te 52 77 128.90659642(76) 69.6(3) min β I 3/2+
Te 105.51(3) keV 33.6(1) d IT (64%) Te 11/2−
β (36%) I
Te 52 78 129.906222745(11) 7.91(21)×10 y ββ Xe 0+ 0.3408(62)
Te 2146.41(4) keV 186(11) ns IT Te 7−
Te 2667.2(8) keV 1.90(8) μs IT Te (10+)
Te 4373.9(9) keV 53(8) ns IT Te (15−)
Te 52 79 130.908522210(65) 25.0(1) min β I 3/2+
Te 182.258(18) keV 32.48(11) h β (74.1%) I 11/2−
IT (25.9%) Te
Te 1940.0(4) keV 93(12) ms IT Te (23/2+)
Te 52 80 131.9085467(37) 3.204(13) d β I 0+
Te 1774.80(9) keV 145(8) ns IT Te 6+
Te 1925.47(9) keV 28.5(9) μs IT Te 7−
Te 2723.3(8) keV 3.62(6) μs IT Te (10+)
Te 52 81 132.9109633(22) 12.5(3) min β I 3/2+#
Te 334.26(4) keV 55.4(4) min β (83.5%) I (11/2−)
IT (16.5%) Te
Te 1610.4(5) keV 100(5) ns IT Te (19/2−)
Te 52 82 133.9113964(29) 41.8(8) min β I 0+
Te 1691.34(16) keV 164.5(7) ns IT Te 6+
Te 52 83 134.9165547(18) 19.0(2) s β I (7/2−)
Te 1554.89(16) keV 511(20) ns IT Te (19/2−)
Te 52 84 135.9201012(24) 17.63(9) s β (98.63%) I 0+
β, n (1.37%) I
Te 52 85 136.9255994(23) 2.49(5) s β (97.06%) I 3/2−#
β, n (2.94%) I
Te 52 86 137.9294725(41) 1.46(25) s β (95.20%) I 0+
β, n (4.80%) I
Te 52 87 138.9353672(38) 724(81) ms β I 5/2−#
Te 52 88 139.939487(15) 351(5) ms β (?%) I 0+
β, n (?%) I
Te 52 89 140.94560(43)# 193(16) ms β I 5/2−#
Te 52 90 141.95003(54)# 147(8) ms β I 0+
Te 52 91 142.95649(54)# 120(8) ms β I 7/2+#
Te 52 92 143.96112(32)# 93(60) ms β I 0+
Te 52 93 144.96778(32)# 75# ms
β I
This table header & footer:
  1. Te – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  7. Bold symbol as daughter – Daughter product is stable.
  8. ( ) spin value – Indicates spin with weak assignment arguments.
  9. Order of ground state and isomer is uncertain.
  10. Believed to undergo ββ decay to Sn with a half-life over 1.6×10 years
  11. Believed to undergo electron capture to Sb with a half-life over 9.2×10 years
  12. ^ Fission product
  13. ^ Primordial radionuclide
  14. Longest measured half-life of any nuclide
  15. Very short-lived fission product, responsible for the iodine pit as precursor of Xe via I

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. Alessandrello, A.; Arnaboldi, C.; Brofferio, C.; Capelli, S.; Cremonesi, O.; Fiorini, E.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pirro, S.; Previtali, E.; Sisti, M.; Vanzini, M.; Zanotti, L.; Giuliani, A.; Pedretti, M.; Bucci, C.; Pobes, C. (2003). "New limits on naturally occurring electron capture of Te". Physical Review C. 67: 014323. arXiv:hep-ex/0211015. Bibcode:2003PhRvC..67a4323A. doi:10.1103/PhysRevC.67.014323.
  3. "Standard Atomic Weights: Tellurium". CIAAW. 1969.
  4. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  5. Many isotopes are expected to have longer half-lives, but decay has not yet been observed in these, allowing only a lower limit to be placed on their half-lives
  6. ^ A. Alessandrello; et al. (January 2003). "New Limits on Naturally Occurring Electron Capture of Te". Physical Review C. 67 (1): 014323. arXiv:hep-ex/0211015. Bibcode:2003PhRvC..67a4323A. doi:10.1103/PhysRevC.67.014323. S2CID 119523039.
  7. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories:
Isotopes of tellurium Add topic