Misplaced Pages

Isotopes of thallium

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Thallium-203)

Isotopes of thallium (81Tl)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Tl synth 3.0421 d ε Hg
Tl 29.5% stable
Tl synth 3.78 y β Pb
ε Hg
Tl 70.5% stable
Standard atomic weight Ar°(Tl)

Thallium (81Tl) has 41 isotopes with atomic masses that range from 176 to 216. Tl and Tl are the only stable isotopes and Tl is the most stable radioisotope with a half-life of 3.78 years. Tl, with a half-life of 4.77 minutes, has the longest half-life of naturally occurring Tl radioisotopes. All isotopes of thallium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Thallium-202 (half-life 12.23 days) can be made in a cyclotron while thallium-204 (half-life 3.78 years) is made by the neutron activation of stable thallium in a nuclear reactor.

In the fully ionized state, the isotope Tl becomes beta-radioactive, undergoing bound-state β decay to Pb with a half-life of 291+33
−27 days, but Tl remains stable.

Tl is the decay product of bismuth-209, an isotope that was once thought to be stable but is now known to undergo alpha decay with an extremely long half-life of 2.01×10 y. Tl is at the end of the neptunium series decay chain.

The neptunium series decay chain, which ends at Tl.

List of isotopes


Nuclide
Historic
name
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Tl 81 95 176.00059(21)# 2.4+1.6
−0.7 ms
p (~63%) Hg (3−, 4−, 5−)
α (~37%) Au
Tl ~671 keV 290+200
−80 μs
p (~50%) Hg
α (~50%) Au
Tl 81 96 176.996427(27) 18(5) ms α (73%) Au (1/2+)
p (27%) Hg
Tl 807(18) keV 230(40) μs p (51%) Hg (11/2−)
α (49%) Au
Tl 81 97 177.99490(12)# 255(9) ms α (62%) Au (4-,5-)
β (38%) Hg
β, SF (0.15%) (various)
Tl 81 98 178.99109(5) 437(9) ms α (60%) Au (1/2+)
β (40%) Hg
Tl 825(10)# keV 1.41(2) ms α Au (11/2−)
IT (rare) Tl
β (rare) Hg
Tl 904.5(9) keV 119(14) ns IT Tl (9/2−)
Tl 81 99 179.98991(13)# 1.09(1) s β (93%) Hg 4-#
α (7%) Au
β, SF (0.0032%) Ru, Kr
Tl 81 100 180.986257(10) 2.9(1) s β (91.4%) Hg 1/2+#
α (8.6%) Au
Tl 834.9(4) keV 1.40(3) ms IT (99.60%) Tl (9/2−)
α (0.40%) Au
Tl 81 101 181.98567(8) 2.0(3) s β (96%) Hg 2−#
α (4%) Au
Tl 100(100)# keV 2.9(5) s α Au (7+)
β (rare) Hg
Tl 600(140)# keV 10−
Tl 81 102 182.982193(10) 6.9(7) s β (98%) Hg 1/2+#
α (2%) Au
Tl 630(17) keV 53.3(3) ms IT (99.99%) Tl 9/2−#
α (.01%) Au
Tl 976.8(3) keV 1.48(10) μs (13/2+)
Tl 81 103 183.98187(5) 9.7(6) s β Hg 2−#
Tl 100(100)# keV 10# s β (97.9%) Hg 7+#
α (2.1%) Au
Tl 500(140)# keV 47.1 ms IT (99.911%) (10−)
α (.089%) Au
Tl 81 104 184.97879(6) 19.5(5) s α Au 1/2+#
β Hg
Tl 452.8(20) keV 1.93(8) s IT (99.99%) Tl 9/2−#
α (.01%) Au
β Hg
Tl 81 105 185.97833(20) 40# s β Hg (2−)
α (.006%) Au
Tl 320(180) keV 27.5(10) s β Hg (7+)
Tl 690(180) keV 2.9(2) s (10−)
Tl 81 106 186.975906(9) ~51 s β Hg (1/2+)
α (rare) Au
Tl 335(3) keV 15.60(12) s α Au (9/2−)
IT Tl
β Hg
Tl 81 107 187.97601(4) 71(2) s β Hg (2−)
Tl 40(30) keV 71(1) s β Hg (7+)
Tl 310(30) keV 41(4) ms (9−)
Tl 81 108 188.973588(12) 2.3(2) min β Hg (1/2+)
Tl 257.6(13) keV 1.4(1) min β (96%) Hg (9/2−)
IT (4%) Tl
Tl 81 109 189.97388(5) 2.6(3) min β Hg 2(−)
Tl 130(90)# keV 3.7(3) min β Hg 7(+#)
Tl 290(70)# keV 750(40) μs (8−)
Tl 410(70)# keV >1 μs 9−
Tl 81 110 190.971786(8) 20# min β Hg (1/2+)
Tl 297(7) keV 5.22(16) min β Hg 9/2(−)
Tl 81 111 191.97223(3) 9.6(4) min β Hg (2−)
Tl 160(50) keV 10.8(2) min β Hg (7+)
Tl 407(54) keV 296(5) ns (8−)
Tl 81 112 192.97067(12) 21.6(8) min β Hg 1/2(+#)
Tl 369(4) keV 2.11(15) min IT (75%) Tl 9/2−
β (25%) Hg
Tl 81 113 193.97120(15) 33.0(5) min β Hg 2−
α (10%) Au
Tl 300(200)# keV 32.8(2) min β Hg (7+)
Tl 81 114 194.969774(15) 1.16(5) h β Hg 1/2+
Tl 482.63(17) keV 3.6(4) s IT Tl 9/2−
Tl 81 115 195.970481(13) 1.84(3) h β Hg 2−
Tl 394.2(5) keV 1.41(2) h β (95.5%) Hg (7+)
IT (4.5%) Tl
Tl 81 116 196.969575(18) 2.84(4) h β Hg 1/2+
Tl 608.22(8) keV 540(10) ms IT Tl 9/2−
Tl 81 117 197.97048(9) 5.3(5) h β Hg 2−
Tl 543.5(4) keV 1.87(3) h β (54%) Hg 7+
IT (46%) Tl
Tl 687.2(5) keV 150(40) ns (5+)
Tl 742.3(4) keV 32.1(10) ms (10−)#
Tl 81 118 198.96988(3) 7.42(8) h β Hg 1/2+
Tl 749.7(3) keV 28.4(2) ms IT Tl 9/2−
Tl 81 119 199.970963(6) 26.1(1) h β Hg 2−
Tl 753.6(2) keV 34.3(10) ms IT Tl 7+
Tl 762.0(2) keV 0.33(5) μs 5+
Tl 81 120 200.970819(16) 72.912(17) h EC Hg 1/2+
Tl 919.50(9) keV 2.035(7) ms IT Tl (9/2−)
Tl 81 121 201.972106(16) 12.23(2) d β Hg 2−
Tl 950.19(10) keV 572(7) μs 7+
Tl 81 122 202.9723442(14) Observationally Stable 1/2+ 0.2952(1) 0.29494–0.29528
Tl 3400(300) keV 7.7(5) μs (25/2+)
Tl 81 123 203.9738635(13) 3.78(2) y β (97.1%) Pb 2−
EC (2.9%) Hg
Tl 1104.0(4) keV 63(2) μs (7)+
Tl 2500(500) keV 2.6(2) μs (12−)
Tl 3500(500) keV 1.6(2) μs (20+)
Tl 81 124 204.9744275(14) Observationally Stable 1/2+ 0.7048(1) 0.70472–0.70506
Tl 3290.63(17) keV 2.6(2) μs 25/2+
Tl 4835.6(15) keV 235(10) ns (35/2–)
Tl Radium E 81 125 205.9761103(15) 4.200(17) min β Pb 0− Trace
Tl 2643.11(19) keV 3.74(3) min IT Tl (12–)
Tl Actinium C 81 126 206.977419(6) 4.77(2) min β Pb 1/2+ Trace
Tl 1348.1(3) keV 1.33(11) s IT (99.9%) Tl 11/2–
β (.1%) Pb
Tl Thorium C" 81 127 207.9820187(21) 3.053(4) min β Pb 5+ Trace
Tl 81 128 208.985359(8) 2.161(7) min β Pb 1/2+ Trace
Tl Radium C″ 81 129 209.990074(12) 1.30(3) min β (99.991%) Pb (5+)# Trace
β, n (.009%) Pb
Tl 81 130 210.993480(50) 80(16) s β (97.8%) Pb 1/2+
β, n (2.2%) Pb
Tl 81 131 211.998340(220)# 31(8) s β (98.2%) Pb (5+)
β, n (1.8%) Pb
Tl 81 132 213.001915(29) 24(4) s β (92.4%) Pb 1/2+
β, n (7.6%) Pb
Tl 81 133 214.006940(210)# 11(2) s β (66%) Pb 5+#
β, n (34%) Pb
Tl 81 134 215.010640(320)# 10(4) s β (95.4%) Pb 1/2+#
β, n (4.6%) Pb
Tl 81 135 216.015800(320)# 6(3) s β Pb 5+#
β, n (<11.5%) Pb
This table header & footer:
  1. Tl – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold symbol as daughter – Daughter product is stable.
  7. ( ) spin value – Indicates spin with weak assignment arguments.
  8. Main isotope used in scintigraphy
  9. Believed to undergo α decay to Au
  10. Final decay product of 4n+1 decay chain (the Neptunium series)
  11. Believed to undergo α decay to Au
  12. Can undergo bound-state β decay to Pb with a half-life of 291+33
    −27 days when fully ionized
  13. ^ Intermediate decay product of U
  14. Intermediate decay product of U
  15. Intermediate decay product of Th
  16. Intermediate decay product of Np

Thallium-201

Thallium-201 (Tl) is a synthetic radioisotope of thallium. It has a half-life of 73 hours and decays by electron capture, emitting X-rays (~70–80 keV), and photons of 135 and 167 keV in 10% total abundance. Thallium-201 is synthesized by the neutron activation of stable thallium in a nuclear reactor, or by the Tl(p, 3n)Pb nuclear reaction in cyclotrons, as Pb naturally decays to Tl afterwards. It is a radiopharmaceutical, as it has good imaging characteristics without excessive patient radiation dose. It is the most popular isotope used for thallium nuclear cardiac stress tests.

References

  1. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Thallium". CIAAW. 2009.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. "Thallium Research". doe.gov. Department of Energy. Archived from the original on 2006-12-09. Retrieved 23 March 2018.
  5. Manual for reactor produced radioisotopes from the International Atomic Energy Agency
  6. "Bound-state beta decay of highly ionized atoms" (PDF). Archived from the original (PDF) on October 29, 2013. Retrieved June 9, 2013.
  7. ^ Bai, M.; Blaum, K.; Boev, B.; Bosch, F.; Brandau, C.; Cvetković, V.; Dickel, T.; Dillmann, I.; Dmytriiev, D.; Faestermann, T.; Forstner, O.; Franczak, B.; Geissel, H.; Gernhäuser, R.; Glorius, J.; Griffin, C. J.; Gumberidze, A.; Haettner, E.; Hillenbrand, P.-M.; Kienle, P.; Korten, W.; Kozhuharov, Ch.; Kuzminchuk, N.; Langanke, K.; Litvinov, S.; Menz, E.; Morgenroth, T.; Nociforo, C.; Nolden, F.; Pavićević, M. K.; Petridis, N.; Popp, U.; Purushothaman, S.; Reifarth, R.; Sanjari, M. S.; Scheidenberger, C.; Spillmann, U.; Steck, M.; Stöhlker, Th.; Tanaka, Y. K.; Trassinelli, M.; Trotsenko, S.; Varga, L.; Wang, M.; Weick, H.; Woods, P. J.; Yamaguchi, T.; Zhang, Y. H.; Zhao, J.; Zuber, K.; et al. (E121 Collaboration and LOREX Collaboration) (2 December 2024). "Bound-State Beta Decay of Tl Ions and the LOREX Project". Physical Review Letters. 133 (23). American Physical Society: 232701. arXiv:2501.06029. doi:10.1103/PhysRevLett.133.232701.
  8. Marcillac, P.; Coron, N.; Dambier, G.; et al. (2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature. 422 (6934): 876–878. Bibcode:2003Natur.422..876D. doi:10.1038/nature01541. PMID 12712201. S2CID 4415582.
  9. Half-life, decay mode, nuclear spin, and isotopic composition is sourced in:
    Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  10. Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1 – 030003-442. doi:10.1088/1674-1137/41/3/030003.
  11. Al-Aqeel, Muneerah Abdullah M. "Decay Spectroscopy of the Thallium Isotopes 176,177Tl". University of Liverpool. ProQuest 2447566201. Retrieved 21 June 2023.
  12. Poli, G. L.; Davids, C. N.; Woods, P. J.; Seweryniak, D.; Batchelder, J. C.; Brown, L. T.; Bingham, C. R.; Carpenter, M. P.; Conticchio, L. F.; Davinson, T.; DeBoer, J.; Hamada, S.; Henderson, D. J.; Irvine, R. J.; Janssens, R. V. F.; Maier, H. J.; Müller, L.; Soramel, F.; Toth, K. S.; Walters, W. B.; Wauters, J. (1 June 1999). "Proton and $\ensuremath{\alpha}$ radioactivity below the $Z=82$ shell closure". Physical Review C. 59 (6): R2979 – R2983. doi:10.1103/PhysRevC.59.R2979. Retrieved 21 June 2023.
  13. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  14. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  15. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  16. Reich, E. S. (2010). "Mercury serves up a nuclear surprise: a new type of fission". Scientific American. Retrieved 12 May 2011.
  17. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (1 March 2021). "The NUBASE2020 evaluation of nuclear physics properties *". Chinese Physics C, High Energy Physics and Nuclear Physics. 45 (3): 030001. Bibcode:2021ChPhC..45c0001K. doi:10.1088/1674-1137/abddae. ISSN 1674-1137. OSTI 1774641.
  18. ^ Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
  19. "Manual for reactor produced radioisotopes" (PDF). International Atomic Energy Agency. 2003. Archived (PDF) from the original on 2011-05-21. Retrieved 2010-05-13.
  20. Cyclotron Produced Radionuclides: Principles and Practice (PDF). International Atomic Energy Agency. 2008. ISBN 9789201002082. Retrieved 2022-07-01.
  21. Maddahi, Jamshid; Berman, Daniel (2001). "Detection, Evaluation, and Risk Stratification of Coronary Artery Disease by Thallium-201 Myocardial Perfusion Scintigraphy 155". Cardiac SPECT imaging (2nd ed.). Lippincott Williams & Wilkins. pp. 155–178. ISBN 978-0-7817-2007-6. Archived from the original on 2017-02-22. Retrieved 2016-09-26.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories:
Isotopes of thallium Add topic