Misplaced Pages

Thermodynamic relations across normal shocks

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (December 2013) (Learn how and when to remove this message)

"Normal shocks" are a fundamental type of shock wave. The waves, which are perpendicular to the flow, are called "normal" shocks. Normal shocks only happen when the flow is supersonic. At those speeds, no obstacle is identified before the speed of sound which makes the molecule return after sensing the obstacle. While returning, the molecule becomes coalescent at certain point. This thin film of molecules act as normal shocks.

Thermodynamic relation across normal shocks

Mach number

The Mach number in the upstream is given by M 1 {\displaystyle {M_{1}}} and the mach number in the downstream is given by M 2 {\displaystyle {M_{2}}}

M 2 2 = 2 γ 1 + M 1 2 2 γ γ 1 M 1 2 1 = ( γ 1 ) M 1 2 + 2 2 γ M 1 2 ( γ 1 ) . {\displaystyle {M_{2}^{2}={\frac {{\frac {2}{\gamma -1}}+M_{1}^{2}}{{\frac {2\gamma }{\gamma -1}}M_{1}^{2}-1}}}={\frac {(\gamma -1)M_{1}^{2}+2}{2\gamma M_{1}^{2}-(\gamma -1)}}.} 1

Note that the Mach numbers are given in the reference frame of the shock.

Static pressure

P 2 P 1 = 2 γ γ + 1 M 1 2 γ 1 γ + 1 {\displaystyle {{\frac {P_{2}}{P_{1}}}={\frac {2\gamma }{\gamma +1}}M_{1}^{2}-{\frac {\gamma -1}{\gamma +1}}}} 2

Static temperature

T 2 T 1 = ( 1 + γ 1 2 M 1 2 ) ( 2 γ γ 1 M 1 2 1 ) 1 2 ( γ + 1 ) 2 ( γ 1 ) M 1 2 = [ 2 γ M 1 2 ( γ 1 ) ] [ ( γ 1 ) M 1 2 + 2 ] ( γ + 1 ) 2 M 1 2 {\displaystyle {{\frac {T_{2}}{T_{1}}}={\frac {\left(1+{\frac {\gamma -1}{2}}M_{1}^{2}\right)\left({\frac {2\gamma }{\gamma -1}}M_{1}^{2}-1\right)}{{\frac {1}{2}}{\frac {\left(\gamma +1\right)^{2}}{\left(\gamma -1\right)}}M_{1}^{2}}}}={\frac {\left\cdot \left}{(\gamma +1)^{2}M_{1}^{2}}}} 3

Stagnation pressure

P 02 P 01 = ( γ + 1 2 M 1 2 1 + γ 1 2 M 1 2 ) γ ( γ 1 ) ( 2 γ γ + 1 M 1 2 γ 1 γ + 1 ) 1 ( γ 1 ) = [ ( γ + 1 ) M 1 2 ( γ 1 ) M 1 2 + 2 ] γ γ 1 [ γ + 1 2 γ M 1 2 ( γ 1 ) ] 1 γ 1 {\displaystyle {\frac {P_{02}}{P_{01}}}=\left({\frac {{\frac {\gamma +1}{2}}M_{1}^{2}}{1+{\frac {\gamma -1}{2}}M_{1}^{2}}}\right)^{\frac {\gamma }{\left(\gamma -1\right)}}\left({\frac {2\gamma }{\gamma +1}}M_{1}^{2}-{\frac {\gamma -1}{\gamma +1}}\right)^{\frac {-1}{\left(\gamma -1\right)}}=\left^{\frac {\gamma }{\gamma -1}}\cdot \left^{\frac {1}{\gamma -1}}} 4

Entropy change

Δ S R = γ γ 1 ln ( 2 ( γ + 1 ) M 1 2 + γ 1 γ + 1 ) + 1 γ 1 ln ( 2 γ γ + 1 M 1 2 γ 1 γ + 1 ) {\displaystyle {{\frac {\Delta S}{R}}={\frac {\gamma }{\gamma -1}}\ln \left({\frac {2}{\left(\gamma +1\right)M_{1}^{2}}}+{\frac {\gamma -1}{\gamma +1}}\right)+{\frac {1}{\gamma -1}}\ln \left({\frac {2\gamma }{\gamma +1}}M_{1}^{2}-{\frac {\gamma -1}{\gamma +1}}\right)}} 5

Reference list

  • Yaha, S.M (2010). Fundamentals of compressible flow (4th ed.). New age international publishers. ISBN 9788122426687.
Category:
Thermodynamic relations across normal shocks Add topic