Misplaced Pages

Time-resolved mass spectrometry

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
The topic of this article may not meet Misplaced Pages's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.
Find sources: "Time-resolved mass spectrometry" – news · newspapers · books · scholar · JSTOR (July 2019) (Learn how and when to remove this message)
A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Misplaced Pages's content policies, particularly neutral point of view. Please discuss further on the talk page. (July 2019) (Learn how and when to remove this message)
(Learn how and when to remove this message)

Time-resolved mass spectrometry (TRMS) is a strategy in analytical chemistry that uses mass spectrometry platform to collect data with temporal resolution. Implementation of TRMS builds on the ability of mass spectrometers to process ions within sub-second duty cycles. It often requires the use of customized experimental setups. However, they can normally incorporate commercial mass spectrometers. As a concept in analytical chemistry, TRMS encompasses instrumental developments (e.g. interfaces, ion sources, mass analyzers), methodological developments, and applications.

Applications

An early application of TRMS was in the observation of flash photolysis process. It took advantage of a time-of-flight mass analyzer. TRMS currently finds applications in the monitoring of organic reactions, formation of reactive intermediates, enzyme-catalyzed reactions, convection, protein folding, extraction, and other chemical and physical processes.

Temporal resolution

TRMS is typically implemented to monitor processes that occur on second to millisecond time scale. However, there exist reports from studies in which sub-millisecond resolutions were achieved.

References

  1. Urban P.L., Chen Y.-C., Wang Y.-S. 2016, Time-Resolved Mass Spectrometry: From Concept to Applications. Wiley, Chichester, ISBN 978-1-118-88732-5, http://as.wiley.com/WileyCDA/WileyTitle/productCd-1118887328.html
  2. Chen, Yu-Chie; Urban, Pawel L. (2013). "Time-resolved mass spectrometry". TrAC Trends in Analytical Chemistry. 44: 106–20. doi:10.1016/j.trac.2012.11.010.
  3. Rob, Tamanna; Wilson, Derek (2012). "Time-resolved mass spectrometry for monitoring millisecond time-scale solution-phase processes". European Journal of Mass Spectrometry. 18 (2): 205–14. doi:10.1255/ejms.1176. PMID 22641726. S2CID 25038189.
  4. ^ Meyer, Richard T. (1967). "Flash Photolysis and Time-Resolved Mass Spectrometry. I. Detection of the Hydroxyl Radical". The Journal of Chemical Physics. 46 (3): 967–972. Bibcode:1967JChPh..46..967M. doi:10.1063/1.1840834.
  5. ^ Meyer, R. T. (1967). "Apparatus for flash photolysis and time resolved mass spectrometry". Journal of Scientific Instruments. 44 (6): 422–426. Bibcode:1967JScI...44..422M. doi:10.1088/0950-7671/44/6/303. Retrieved 27 January 2014.
  6. ^ Miao, Zhixin; Chen, Hao; Liu, Pengyuan; Liu, Yan (2011). "Development of Submillisecond Time-Resolved Mass Spectrometry Using Desorption Electrospray Ionization". Analytical Chemistry. 83 (11): 3994–7. doi:10.1021/ac200842e. PMID 21539335. S2CID 5294644.
  7. Perry, Richard H.; Splendore, Maurizio; Chien, Allis; Davis, Nick K.; Zare, Richard N. (2011). "Detecting Reaction Intermediates in Liquids on the Millisecond Time Scale Using Desorption Electrospray Ionization". Angewandte Chemie International Edition. 50 (1): 250–4. doi:10.1002/anie.201004861. PMID 21110361. S2CID 205360159.
  8. Ting, Hsu; Urban, Pawel L. (2014). "Spatiotemporal effects of a bioautocatalytic chemical wave revealed by time-resolved mass spectrometry". RSC Advances. 4 (5): 2103–8. Bibcode:2014RSCAd...4.2103T. doi:10.1039/C3RA42873G. S2CID 93801916.
  9. Li, Po-Han; Ting, Hsu; Chen, Yu-Chie; Urban, Pawel L. (2012). "Recording temporal characteristics of convection currents by continuous and segmented-flow sampling" (PDF). RSC Advances. 2 (32): 12431–7. Bibcode:2012RSCAd...212431L. doi:10.1039/C2RA21695G.
  10. Breuker, K.; McLafferty, F. W. (2008). "Stepwise evolution of protein native structure with electrospray into the gas phase, 10-12 to 102 s". Proceedings of the National Academy of Sciences. 105 (47): 18145–52. Bibcode:2008PNAS..10518145B. doi:10.1073/pnas.0807005105. JSTOR 25465429. PMC 2587555. PMID 19033474.
  11. Hu, J.-B.; Chen, S.-Y.; Wu, J.-T.; Chen, Y.-C.; Urban, P L. (2014). "Automated system for extraction and instantaneous analysis of millimeter-sized samples". RSC Advances. 4 (21): 10693–10701. Bibcode:2014RSCAd...410693H. doi:10.1039/C3RA48023B. S2CID 44124259.
Categories: