Misplaced Pages

Isotopes of tin

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Tin-132)

Isotopes of tin (50Sn)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Sn 0.970% stable
Sn 0.66% stable
Sn 0.34% stable
Sn 14.5% stable
Sn 7.68% stable
Sn 24.2% stable
Sn 8.59% stable
Sn 32.6% stable
Sn 4.63% stable
Sn 5.79% stable
Sn trace 2.3×10 y β Sb
Standard atomic weight Ar°(Sn)

Tin (50Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay). This is probably related to the fact that 50 is a "magic number" of protons. In addition, twenty-nine unstable tin isotopes are known, including tin-100 (Sn) (discovered in 1994) and tin-132 (Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Sn 50 49 98.94850(63)# 24(4) ms β (95%) In 9/2+#
βp (5%) Cd
Sn 50 50 99.93865(26) 1.18(8) s β (>83%) In 0+
βp (<17%) Cd
Sn 50 51 100.93526(32) 2.22(5) s β In (7/2+)
βp? Cd
Sn 50 52 101.93029(11) 3.8(2) s β In 0+
Sn 2017(2) keV 367(8) ns IT Sn (6+)
Sn 50 53 102.92797(11)# 7.0(2) s β (98.8%) In 5/2+#
βp (1.2%) Cd
Sn 50 54 103.923105(6) 20.8(5) s β In 0+
Sn 50 55 104.921268(4) 32.7(5) s β In (5/2+)
βp (0.011%) Cd
Sn 50 56 105.916957(5) 1.92(8) min β In 0+
Sn 50 57 106.915714(6) 2.90(5) min β In (5/2+)
Sn 50 58 107.911894(6) 10.30(8) min β In 0+
Sn 50 59 108.911293(9) 18.1(2) min β In 5/2+
Sn 50 60 109.907845(15) 4.154(4) h EC In 0+
Sn 50 61 110.907741(6) 35.3(6) min β In 7/2+
Sn 254.71(4) keV 12.5(10) μs IT Sn 1/2+
Sn 50 62 111.9048249(3) Observationally Stable 0+ 0.0097(1)
Sn 50 63 112.9051759(17) 115.08(4) d β In 1/2+
Sn 77.389(19) keV 21.4(4) min IT (91.1%) Sn 7/2+
β (8.9%) In
Sn 50 64 113.90278013(3) Stable 0+ 0.0066(1)
Sn 3087.37(7) keV 733(14) ns IT Sn 7−
Sn 50 65 114.903344695(16) Stable 1/2+ 0.0034(1)
Sn 612.81(4) keV 3.26(8) μs IT Sn 7/2+
Sn 713.64(12) keV 159(1) μs IT Sn 11/2−
Sn 50 66 115.90174283(10) Stable 0+ 0.1454(9)
Sn 2365.975(21) keV 348(19) ns IT Sn 5−
Sn 3547.16(17) keV 833(30) ns IT Sn 10+
Sn 50 67 116.90295404(52) Stable 1/2+ 0.0768(7)
Sn 314.58(4) keV 13.939(24) d IT Sn 11/2−
Sn 2406.4(4) keV 1.75(7) μs IT Sn (19/2+)
Sn 50 68 117.90160663(54) Stable 0+ 0.2422(9)
Sn 2574.91(4) keV 230(10) ns IT Sn 7−
Sn 3108.06(22) keV 2.52(6) μs IT Sn (10+)
Sn 50 69 118.90331127(78) Stable 1/2+ 0.0859(4)
Sn 89.531(13) keV 293.1(7) d IT Sn 11/2−
Sn 2127.0(10) keV 9.6(12) μs IT Sn (19/2+)
Sn 2369.0(3) keV 96(9) ns IT Sn 23/2+
Sn 50 70 119.90220256(99) Stable 0+ 0.3258(9)
Sn 2481.63(6) keV 11.8(5) μs IT Sn 7−
Sn 2902.22(22) keV 6.26(11) μs IT Sn 10+
Sn 50 71 120.9042435(11) 27.03(4) h β Sb 3/2+
Sn 6.31(6) keV 43.9(5) y IT (77.6%) Sn 11/2−
β (22.4%) Sb
Sn 1998.68(13) keV 5.3(5) μs IT Sn 19/2+
Sn 2222.0(2) keV 520(50) ns IT Sn 23/2+
Sn 2833.9(2) keV 167(25) ns IT Sn 27/2−
Sn 50 72 121.9034455(26) Observationally Stable 0+ 0.0463(3)
Sn 2409.03(4) keV 7.5(9) μs IT Sn 7−
Sn 2765.5(3) keV 62(3) μs IT Sn 10+
Sn 4721.2(3) keV 139(9) ns IT Sn 15−
Sn 50 73 122.9057271(27) 129.2(4) d β Sb 11/2−
Sn 24.6(4) keV 40.06(1) min β Sb 3/2+
Sn 1944.90(12) keV 7.4(26) μs IT Sn 19/2+
Sn 2152.66(19) keV 6 μs IT Sn 23/2+
Sn 2712.47(21) keV 34 μs IT Sn 27/2−
Sn 50 74 123.9052796(14) Observationally Stable 0+ 0.0579(5)
Sn 2204.620(23) keV 270(60) ns IT Sn 5-
Sn 2324.96(4) keV 3.1(5) μs IT Sn 7−
Sn 2656.6(3) keV 51(3) μs IT Sn 10+
Sn 4552.4(3) keV 260(25) ns IT Sn 15−
Sn 50 75 124.9077894(14) 9.634(15) d β Sb 11/2−
Sn 27.50(14) keV 9.77(25) min β Sb 3/2+
Sn 1892.8(3) keV 6.2(2) μs IT Sn 19/2+
Sn 2059.5(4) keV 650(60) ns IT Sn 23/2+
Sn 2623.5(5) keV 230(17) ns IT Sn 27/2−
Sn 50 76 125.907658(11) 2.30(14)×10 y β Sb 0+ < 10
Sn 2218.99(8) keV 6.1(7) μs IT Sn 7−
Sn 2564.5(5) keV 7.6(3) μs IT Sn 10+
Sn 4347.4(4) keV 114(2) ns IT Sn 15−
Sn 50 77 126.9103917(99) 2.10(4) h β Sb 11/2−
Sn 5.07(6) keV 4.13(3) min β Sb 3/2+
Sn 1826.67(16) keV 4.52(15) μs IT Sn 19/2+
Sn 1930.97(17) keV 1.26(15) μs IT Sn (23/2+)
Sn 2552.4(10) keV 250 ns (30) ns IT Sn (27/2−)
Sn 50 78 127.910508(19) 59.07(14) min β Sb 0+
Sn 2091.50(11) keV 6.5(5) s IT Sn 7−
Sn 2491.91(17) keV 2.91(14) μs IT Sn 10+
Sn 4099.5(4) keV 220(30) ns IT Sn (15−)
Sn 50 79 128.913482(19) 2.23(4) min β Sb 3/2+
Sn 35.15(5) keV 6.9(1) min β Sb 11/2−
Sn 1761.6(10) keV 3.49(11) μs IT Sn (19/2+)
Sn 1802.6(10) keV 2.22(13) μs IT Sn 23/2+
Sn 2552.9(11) keV 221(18) ns IT Sn (27/2−)
Sn 50 80 129.9139745(20) 3.72(7) min β Sb 0+
Sn 1946.88(10) keV 1.7(1) min β Sb 7−
Sn 2434.79(12) keV 1.501(17) μs IT Sn (10+)
Sn 50 81 130.917053(4) 56.0(5) s β Sb 3/2+
Sn 65.1(3) keV 58.4(5) s β Sb 11/2−
IT? Sn
Sn 4670.0(4) keV 316(5) ns IT Sn (23/2−)
Sn 50 82 131.9178239(21) 39.7(8) s β Sb 0+
Sn 4848.52(20) keV 2.080(16) μs IT Sn 8+
Sn 50 83 132.9239138(20) 1.37(7) s β (99.97%) Sb 7/2−
βn (.0294%) Sb
Sn 50 84 133.928680(3) 0.93(8) s β (83%) Sb 0+
βn (17%) Sb
Sn 1247.4(5) keV 87(8) ns IT Sn 6+
Sn 50 85 134.934909(3) 515(5) ms β (79%) Sb 7/2−#
βn (21%) Sb
β2n? Sb
Sn 50 86 135.93970(22)# 355(18) ms β (72%) Sb 0+
βn (28%) Sb
β2n? Sb
Sn 50 87 136.94616(32)# 249(15) ms β (52%) Sb 5/2−#
βn (48%) Sb
β2n? Sb
Sn 50 88 137.95114(43)# 148(9) ms β (64%) Sb 0+
βn (36%) Sb
β2n? Sb
Sn 1344(2) keV 210(45) ns IT Sn (6+)
Sn 50 89 138.95780(43)# 120(38) ms β Sb 5/2−#
βn? Sb
β2n? Sb
Sn 50 90 139.96297(32)# 50# ms
β? Sb 0+
βn? Sb
β2n? Sb
This table header & footer:
  1. Sn – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold symbol as daughter – Daughter product is stable.
  7. ( ) spin value – Indicates spin with weak assignment arguments.
  8. Heaviest known nuclide with more protons than neutrons
  9. Heaviest nuclide with equal numbers of protons and neutrons with no observed α decay
  10. Believed to decay by ββ to Cd
  11. ^ Fission product
  12. Believed to undergo ββ decay to Te
  13. Believed to undergo ββ decay to Te with a half-life over 1×10 years
  14. Long-lived fission product

Tin-117m

Tin-117m is a radioisotope of tin. One of its uses is in a particulate suspension to treat canine synovitis (radiosynoviorthesis).

Tin-121m

Tin-121m (Sn) is a radioisotope and nuclear isomer of tin with a half-life of 43.9 years.

In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce tin-121 at higher yields. For example, its yield from uranium-235 is 0.0007% per thermal fission and 0.002% per fast fission.

Tin-126

Yield, % per fission
Thermal Fast 14 MeV
Th not fissile 0.0481 ± 0.0077 0.87 ± 0.20
U 0.224 ± 0.018 0.278 ± 0.022 1.92 ± 0.31
U 0.056 ± 0.004 0.0137 ± 0.001 1.70 ± 0.14
U not fissile 0.054 ± 0.004 1.31 ± 0.21
Pu 0.199 ± 0.016 0.26 ± 0.02 2.02 ± 0.22
Pu 0.082 ± 0.019 0.22 ± 0.03 ?

Tin-126 is a radioisotope of tin and one of the only seven long-lived fission products of uranium and plutonium. While tin-126's half-life of 230,000 years translates to a low specific activity of gamma radiation, its short-lived decay products, two isomers of antimony-126, emit 17 and 40 keV gamma radiation and a 3.67 MeV beta particle on their way to stable tellurium-126, making external exposure to tin-126 a potential concern.

Tin-126 is in the middle of the mass range for fission products. Thermal reactors, which make up almost all current nuclear power plants, produce it at a very low yield (0.056% for U), since slow neutrons almost always fission U or Pu into unequal halves. Fast fission in a fast reactor or nuclear weapon, or fission of some heavy minor actinides such as californium, will produce it at higher yields.

References

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Tin". CIAAW. 1983.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. K. Sümmerer; R. Schneider; T Faestermann; J. Friese; H. Geissel; R. Gernhäuser; H. Gilg; F. Heine; J. Homolka; P. Kienle; H. J. Körner; G. Münzenberg; J. Reinhold; K. Zeitelhack (April 1997). "Identification and decay spectroscopy of Sn at the GSI projectile fragment separator FRS". Nuclear Physics A. 616 (1–2): 341–345. Bibcode:1997NuPhA.616..341S. doi:10.1016/S0375-9474(97)00106-1.
  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. Shen, Hongtao; Jiang, Shan; He, Ming; Dong, Kejun; Li, Chaoli; He, Guozhu; Wu, Shaolei; Gong, Jie; Lu, Liyan; Li, Shizhuo; Zhang, Dawei; Shi, Guozhu; Huang, Chuntang; Wu, Shaoyong (February 2011). "Study on measurement of fission product nuclide 126Sn by AMS" (PDF). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 269 (3): 392–395. doi:10.1016/j.nimb.2010.11.059.
  7. "https://www.nrc.gov/site-help/search.html?site=AllSites&searchtext=synovetin" (PDF). {{cite web}}: External link in |title= (help)
  8. ^ M. B. Chadwick et al, "Evaluated Nuclear Data File (ENDF) : ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at https://www-nds.iaea.org/exfor/endf.htm)
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories:
Isotopes of tin Add topic