Misplaced Pages

Titanocene dichloride

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
Titanocene dichloride
Titanocene dichloride
Titanocene dichloride
Ball-and-stick model of titanocene dichloride
Ball-and-stick model of titanocene dichloride
Sample of titanocene dichloride
Sample of titanocene dichloride
Names
IUPAC name Dichloridobis(η-cyclopentadienyl)titanium
Other names titanocene dichloride, dichlorobis(cyclopentadienyl)titanium(IV)
Identifiers
CAS Number
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.013.669 Edit this at Wikidata
EC Number
  • 215-035-9
PubChem CID
RTECS number
  • XR2050000
UNII
UN number 3261
CompTox Dashboard (EPA)
InChI
  • InChI=1S/2C5H5.2ClH.Ti/c2*1-2-4-5-3-1;;;/h2*1-5H;2*1H;/q2*-1;;;+4/p-2Key: YMNCCEXICREQQV-UHFFFAOYSA-L
  • InChI=1/2C5H5.2ClH.Ti/c2*1-2-4-5-3-1;;;/h2*1-5H;2*1H;/q2*-1;;;+4/p-2/r2C5H5.Cl2Ti/c2*1-2-4-5-3-1;1-3-2/h2*1-5H;/q2*-1;+2Key: YMNCCEXICREQQV-JUFMQDBHAK
SMILES
  • 1cccc1.1cccc1.ClCl
Properties
Chemical formula C10H10Cl2Ti
Molar mass 248.96 g/mol
Appearance bright red solid
Density 1.60 g/cm, solid
Melting point 289 °C (552 °F; 562 K)
Solubility in water sl. sol. with hydrolysis
Structure
Crystal structure Triclinic
Coordination geometry Dist. tetrahedral
Hazards
GHS labelling:
Pictograms GHS07: Exclamation mark
Signal word Warning
Hazard statements H315, H335
Precautionary statements P201, P202, P261, P264, P270, P271, P280, P281, P301+P310, P301+P312, P302+P352, P304+P340, P305+P351+P338, P308+P313, P312, P330, P332+P313, P337+P313, P362, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability (red): no hazard codeInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
2 1
Related compounds
Related compounds Ferrocene
Zirconocene dichloride
Hafnocene dichloride
Vanadocene dichloride
Niobocene dichloride
Tantalocene dichloride
Molybdocene dichloride
Tungstenocene dichloride
TiCl4
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). ☒verify (what is  ?) Infobox references
Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

Preparation and structure

The standard preparations of Cp2TiCl2 start with titanium tetrachloride. The original synthesis by Wilkinson and Birmingham, using sodium cyclopentadienide, is still commonly used:

2 NaC5H5 + TiCl4 → (C5H5)2TiCl2 + 2 NaCl

It can also be prepared by using freshly distilled cyclopentadiene rather than its sodium derivative:

2 C5H6 + TiCl4 → (C5H5)2TiCl2 + 2 HCl

Focusing on the geometry of the Ti center, Cp2TiCl2 adopts a distorted tetrahedral geometry (counting Cp as a monodentate ligand). The Ti-Cl distance is 2.37 Å and the Cl-Ti-Cl angle is 95°.

Reactions

Halide replacement reactions

Cp2TiCl2 serves as a source of Cp2Ti. A large range of nucleophiles will displace chloride. With NaSH and with polysulfide salts, one obtains the sulfido derivatives Cp2Ti(SH)2 and Cp2TiS5.

The Petasis reagent, Cp2Ti(CH3)2, is prepared from the action of methylmagnesium chloride or methyllithium on Cp2TiCl2. This reagent is useful for the conversion of esters into vinyl ethers.

The Tebbe reagent Cp2TiCl(CH2)Al(CH3)2, arises by the action of 2 equivalents Al(CH3)3 on Cp2TiCl2.

Reactions affecting Cp ligands

One Cp ligand can be removed from Cp2TiCl2 to give tetrahedral CpTiCl3. This conversion can be effected with TiCl4 or by reaction with SOCl2.

The sandwich complex (Cycloheptatrienyl)(cyclopentadienyl)titanium is prepared by treatment of titanocene dichloride with lithium cycloheptatrienyl.

Titanocene itself, TiCp2, is so highly reactive that it rearranges into a Ti hydride dimer and has been the subject of much investigation. This dimer can be trapped by conducting the reduction of titanocene dichloride in the presence of ligands; in the presence of benzene, a fulvalene complex, μ(η:η-fulvalene)-di-(μ-hydrido)-bis(η-cyclopentadienyltitanium), can be prepared and the resulting solvate structurally characterised by X-ray crystallography. The same compound had been reported earlier by a lithium aluminium hydride reduction and sodium amalgam reduction of titanocene dichloride, and studied by H NMR prior to its definitive characterisation.

"Titanocene" is not Ti(C5H5)2, but rather this isomer with a fulvalene dihydride structure.

Redox

Reduction with zinc gives the dimer of bis(cyclopentadienyl)titanium(III) chloride in a solvent-mediated chemical equilibrium:

Cp2TiCl2 is a precursor to Ti derivatives. Reductions have been investigated using Grignard reagent and alkyl lithium compounds. More conveniently handled reductants include Mg, Al, or Zn. The following syntheses demonstrate some of the compounds that can be generated by reduction of titanocene dichloride in the presence of π acceptor ligands:

Cp2TiCl2 + 2 CO + Mg → Cp2Ti(CO)2 + MgCl2
Cp2TiCl2 + 2 PR3 + Mg → Cp2Ti(PR3)2 + MgCl2

Alkyne derivatives of titanocene have the formula (C5H5)2Ti(C2R2) and the corresponding benzyne complexes are known. One family of derivatives are the titanocyclopentadienes. Rosenthal's reagent, Cp2Ti(η-Me3SiC≡CSiMe3), can be prepared by this method. Two structures are shown, A and B, which are both resonance contributors to the actual structure of Rosenthal's reagent.

Titanocene equivalents react with alkenyl alkynes followed by carbonylation and hydrolysis to form bicyclic cyclopentadienones, related to the Pauson–Khand reaction. A similar reaction is the reductive cyclization of enones to form the corresponding alcohol in a stereoselective manner.

Reduction of titanocene dichloride in the presence of conjugated dienes such as 1,3-butadiene gives η-allyltitanium complexes. Related reactions occur with diynes. Furthermore, titanocene can catalyze C–C bond metathesis to form asymmetric diynes.

Titanocene dichloride as a photoredox catalyst to open epoxides in green light.

Derivatives of (C5Me5)2TiCl2

Many analogues of Cp2TiCl2 are known. Prominent examples are the ring-methylated derivatives (C5H4Me)2TiCl2 and (C5Me5)2TiCl2.

Medicinal research

Titanocene dichloride was investigated as an anticancer drug. In fact, it was both the first non-platinum coordination complex and the first metallocene to undergo a clinical trial.

References

  1. "Summary of Classification and Labelling". Retrieved 5 December 2021.
  2. Budaver, S., ed. (1989). The Merck Index (11th ed.). Merck & Co., Inc.
  3. ^ Roat-Malone, R. M. (2007). Bioinorganic Chemistry: A Short Course (2nd ed.). John Wiley & Sons. pp. 19–20. ISBN 978-0-471-76113-6.
  4. Wilkinson, G.; Birmingham, J.G. (1954). "Bis-cyclopentadienyl Compounds of Ti, Zr, V, Nb and Ta". J. Am. Chem. Soc. 76 (17): 4281–4284. doi:10.1021/ja01646a008.
  5. Sara E. Johnson; Taylor A. Bell; Joseph K. West (2022). "Cp2TiCl2: Synthesis, Characterization, Modeling and Catalysis". Journal of Chemical Education. 99 (5): 2121–2128. Bibcode:2022JChEd..99.2121J. doi:10.1021/acs.jchemed.1c01272. S2CID 248287682.
  6. Birmingham, J. M. (1965). "Synthesis of Cyclopentadienyl Metal Compounds". Adv. Organometal. Chem. Advances in Organometallic Chemistry. 2: 365–413. doi:10.1016/S0065-3055(08)60082-9. ISBN 9780120311026.
  7. Clearfield, Abraham; Warner, David Keith; Saldarriaga Molina, Carlos Hermán; Ropal, Ramanathan; Bernal, Ivan; et al. (1975). "Structural Studies of (π-C5H5)2MX2 Complexes and their Derivatives. The Structure of Bis(π-cyclopentadienyl)titanium Dichloride". Can. J. Chem. 53 (11): 1621–1629. doi:10.1139/v75-228.
  8. Shaver, Alan; McCall, James M.; Marmolejo, Gabriela (1990). "Cyclometallapolysulfanes (And Selanes) of Bis(η5-Cyclopentadienyl) Titanium(IV), Zirconium(IV), Molybdenum(IV), and Tungsten(IV)". Cyclometallapolysulfanes (and Selanes) of Bis(η-Cyclopentadienyl) Titanium(IV), Zirconium(IV), Molybdenum(IV), and Tungsten(IV). Inorganic Syntheses. Vol. 27. pp. 59–65. doi:10.1002/9780470132586.ch11. ISBN 9780470132586.
  9. Payack, J. F.; Hughes, D. L.; Cai, D.; Cottrell, I. F.; Verhoeven, T. R. (2002). "Dimethyltitanocene". Organic Syntheses. 79: 19.
  10. Claus, K.; Bestian, H. (1962). "Über die Einwirkung von Wasserstoff auf einige metallorganische Verbindungen und Komplexe". Justus Liebigs Ann. Chem. 654: 8–19. doi:10.1002/jlac.19626540103.
  11. Herrmann, W.A. (1982). "The Methylene Bridge". Adv. Organomet. Chem. Advances in Organometallic Chemistry. 20: 159–263. doi:10.1016/s0065-3055(08)60522-5. ISBN 9780120311200.
  12. Straus, D. A. (2000). "μ-Chlorobis(cyclopentadienyl)(dimethylaluminium)-μ-methylenetitanium". Encyclopedia of Reagents for Organic Synthesis. London: John Wiley.
  13. Chandra, K.; Sharma, R. K.; Kumar, N.; Garg, B. S. (1980). "Preparation of η-Cyclopentadienyltitanium Trichloride and η-Methylcyclopentadienyltitanium Trichloride". Chem. Ind. - London. 44: 288–289.
  14. Camargo, Luana C.; Briganti, Matteo; Santana, Francielli S.; Stinghen, Danilo; Ribeiro, Ronny R.; Nunes, Giovana G.; Soares, Jaísa F.; Salvadori, Enrico; Chiesa, Mario; Benci, Stefano; Torre, Renato; Sorace, Lorenzo; Totti, Federico; Sessoli, Roberta (2021). "Exploring the Organometallic Route to Molecular Spin Qubits: The [Cp Ti(cot)] Case". Angewandte Chemie International Edition. 60 (5): 2588–2593. doi:10.1002/anie.202009634. hdl:2318/1765157. PMID 33051985. S2CID 222351619.
  15. ^ Wailes, P. C.; Coutts, R. S. P.; Weigold, H. (1974). "Titanocene". Organometallic Chemistry of Titanium, Zirconium, and Hafnium. Academic Press. pp. 229–237. ISBN 9780323156479.
  16. ^ Mehrotra, R. C.; Singh, A. (2000). "4.3.6 η-Cyclopentadienyl d-Block Metal Complexes". Organometallic Chemistry: A Unified Approach (2nd ed.). New Delhi: New Age International Publishers. pp. 243–268. ISBN 9788122412581.
  17. ^ Troyanov, Sergei I.; Antropiusová, Helena; Mach, Karel (1992). "Direct proof of the molecular structure of dimeric titanocene; The X-ray structure of μ(η:η-fulvalene)-di-(μ-hydrido)-bis(η-cyclopentadienyltitanium)·1.5 benzene". J. Organomet. Chem. 427 (1): 49–55. doi:10.1016/0022-328X(92)83204-U.
  18. Antropiusová, Helena; Dosedlová, Alena; Hanuš, Vladimir; Karel, Mach (1981). "Preparation of μ-(η:η-Fulvalene)-di-μ-hydrido-bis(η-cyclopentadienyltitanium) by the reduction of Cp2TiCl2 with LiAlH4 in aromatic solvents". Transition Met. Chem. 6 (2): 90–93. doi:10.1007/BF00626113. S2CID 101189483.
  19. Cuenca, Tomas; Herrmann, Wolfgang A.; Ashworth, Terence V. (1986). "Chemistry of oxophilic transition metals. 2. Novel derivatives of titanocene and zirconocene". Organometallics. 5 (12): 2514–2517. doi:10.1021/om00143a019.
  20. Lemenovskii, D. A.; Urazowski, I. F.; Grishin, Yu K.; Roznyatovsky, V. A. (1985). "H NMR Spectra and electronic structure of binuclear niobocene and titanocene containing fulvalene ligands". J. Organomet. Chem. 290 (3): 301–305. doi:10.1016/0022-328X(85)87293-4.
  21. Manzer, L. E.; Mintz, E. A.; Marks, T. J. (1982). "18. Cyclopentadienyl Complexes of Titanium(III) and Vanadium(III)". Inorganic Syntheses. Vol. 21. pp. 84–86. doi:10.1002/9780470132524.ch18. ISBN 9780470132524. {{cite book}}: |journal= ignored (help)
  22. Nugent, William A.; RajanBabu, T. V. (1988). "Transition-metal-centered radicals in organic synthesis. Titanium(III)-induced cyclization of epoxy olefins". J. Am. Chem. Soc. 110 (25): 8561–8562. doi:10.1021/ja00233a051.
  23. Kuester, Erik (2002). "Bis(η5-2,4-cyclopentadienyl)bis(trimethylphosphine)titanium". Bis(5-2,4-cyclopentadienyl)bis(trimethylphosphine)titanium. Encyclopedia of Reagents for Organic Synthesis. John Wiley. doi:10.1002/047084289X.rn00022. ISBN 0471936235.
  24. Buchwald, S. L.; Nielsen, R. B. (1988). "Group 4 Metal Complexes of Benzynes, Cycloalkynes, Acyclic Alkynes, and Alkenes". Chem. Rev. 88 (7): 1047–1058. doi:10.1021/cr00089a004.
  25. ^ Rosenthal, Uwe; Pellny, Paul-Michael; Kirchbauer, Frank G.; Burlakov, Vladimir V. (2000). "What Do Titano- and Zirconocenes Do with Diynes and Polyynes?". Chem. Rev. 33 (2): 119–129. doi:10.1021/ar9900109. PMID 10673320.
  26. Rosenthal, Uwe; Burlakov, Vladimir V.; Arndt, Perdita; Baumann, Wolfgang; Spannenberg, Anke (2003). "The Titanocene Complex of Bis(trimethylsilyl)acetylene: Synthesis, Structure, and Chemistry". Organometallics. 22 (5): 884–900. doi:10.1021/om0208570.
  27. Hicks, F. A.; et al. (1999). "Scope of the Intramolecular Titanocene-Catalyzed Pauson-Khand Type Reaction". J. Am. Chem. Soc. 121 (25): 5881–5898. doi:10.1021/ja990682u.
  28. Kablaoui, N. M.; Buchwald, S. L. (1998). "Development of a Method for the Reductive Cyclization of Enones by a Titanium Catalyst". J. Am. Chem. Soc. 118 (13): 3182–3191. doi:10.1021/ja954192n.
  29. Sato, F.; Urabe, Hirokazu; Okamoto, Sentaro (2000). "Synthesis of Organotitanium Complexes from Alkenes and Alkynes and Their Synthetic Applications". Chem. Rev. 100 (8): 2835–2886. doi:10.1021/cr990277l. PMID 11749307.
  30. Zhang, Zhenhua; Hilche, Tobias; Slak, Daniel; Rietdijk, Niels R.; Oloyede, Ugochinyere N.; Flowers, Robert A.; Gansäuer, Andreas (2020-06-08). "Titanocenes as Photoredox Catalysts Using Green-Light Irradiation". Angewandte Chemie International Edition. 59 (24): 9355–9359. doi:10.1002/anie.202001508. ISSN 1433-7851. PMC 7317808. PMID 32216162.
  31. Cini, M.; Bradshaw, T. D.; Woodward, S. (2017). "Using titanium complexes to defeat cancer: the view from the shoulders of Titans" (PDF). Chem. Soc. Rev. 46 (4): 1040–1051. doi:10.1039/C6CS00860G. PMID 28124046. Archived from the original (PDF) on 2018-07-19. Retrieved 2019-07-13.

Further reading

Titanium compounds
Titanium(II)
Organotitanium(II) compounds
Titanium(III)
Organotitanium(III) compounds2
Titanium(IV)
Titanate compounds
Organotitanium(IV) compounds
Salts and covalent derivatives of the cyclopentadienide ion
CpH He
LiCp Be B CpMe N C5H4O F Ne
NaCp MgCp2

MgCpBr

Al Si P S Cl Ar
K CaCp2 ScCp3 TiCp2Cl2

(TiCp2Cl)2
TiCpCl3
TiCp2S5
TiCp2(CO)2
TiCp2Me2

VCp2

VCpCh
VCp2Cl2
VCp(CO)4

CrCp2

(CrCp(CO)3)2

MnCp2 FeCp2

Fe(η-C5H4Li)2
((C5H5)Fe(C5H4))2
(C5H4-C5H4)2Fe2
FeCp2PF6
FeCp(CO)2I

CoCp2

CoCp(CO)2

NiCp2

NiCpNO

Cu Zn Ga Ge As Se Br Kr
Rb Sr Y(C5H5)3 ZrCp2Cl2

ZrCp2ClH

NbCp2Cl2 MoCp2H2

MoCp2Cl2
(MoCp(CO)3)2

Tc RuCp2

RuCp(PPh3)2Cl
RuCp(MeCN)3PF6

RhCp2 PdCp(C3H5) Ag Cd InCp SnCp2 Sb Te I Xe
Cs Ba * LuCp3 HfCp2Cl2 Ta (WCp(CO)3)2 ReCp2H OsCp2 IrCp2 Pt Au Hg TlCp PbCp2 Bi Po At Rn
Fr Ra ** Lr Rf Db Sg Bh HsCp2 Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaCp3 CeCp3 PrCp3 NdCp3 PmCp3 SmCp3 Eu Gd Tb DyCp3 Ho ErCp3 TmCp3 YbCp3
** Ac ThCp3
ThCp4
Pa UCp4 Np Pu Am Cm Bk Cf Es Fm Md No
Categories: