Misplaced Pages

Zariski's finiteness theorem

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In algebra, Zariski's finiteness theorem gives a positive answer to Hilbert's 14th problem for the polynomial ring in two variables, as a special case. Precisely, it states:

Given a normal domain A, finitely generated as an algebra over a field k, if L is a subfield of the field of fractions of A containing k such that t r . d e g k ( L ) 2 {\displaystyle \operatorname {tr.deg} _{k}(L)\leq 2} , then the k-subalgebra L A {\displaystyle L\cap A} is finitely generated.

References

  1. "HILBERT'S FOURTEENTH PROBLEM AND LOCALLY NILPOTENT DERIVATIONS" (PDF). Retrieved 2023-08-25.
  • Zariski, O. (1954). "Interprétations algébrico-géométriques du quatorzième problème de Hilbert". Bull. Sci. Math. (2). 78: 155–168.


Stub icon

This commutative algebra-related article is a stub. You can help Misplaced Pages by expanding it.

Stub icon

This article about the history of mathematics is a stub. You can help Misplaced Pages by expanding it.

Categories:
Zariski's finiteness theorem Add topic