Misplaced Pages

Pomeranchuk instability

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Pomeranchuk instability is an instability in the shape of the Fermi surface of a material with interacting fermions, causing Landau’s Fermi liquid theory to break down. It occurs when a Landau parameter in Fermi liquid theory has a sufficiently negative value, causing deformations of the Fermi surface to be energetically favourable. It is named after the Soviet physicist Isaak Pomeranchuk.

Introduction: Landau parameter for a Fermi liquid

In a Fermi liquid, renormalized single electron propagators (ignoring spin) are G ( K ) = Z k 0 ϵ k + i η sgn ( k 0 ) , {\displaystyle G(K)={\frac {Z}{k_{0}-\epsilon _{\vec {k}}+i\eta \operatorname {sgn}(k_{0})}}{\text{,}}} where capital momentum letters denote four-vectors K = ( k 0 , k ) {\textstyle K=(k_{0},{\vec {k}})} and the Fermi surface has zero energy; poles of this function determine the quasiparticle energy-momentum dispersion relation. The four-point vertex function Γ ( K 3 , K 4 ; K 1 , K 2 ) {\textstyle \Gamma _{(K_{3},K_{4};K_{1},K_{2})}} describes the diagram with two incoming electrons of momentum K 1 {\textstyle K_{1}} and K 2 {\textstyle K_{2}} ; two outgoing electrons of momentum K 3 {\textstyle K_{3}} and K 4 {\textstyle K_{4}} ; and amputated external lines: Γ ( K 3 , K 4 ; K 1 , K 2 ) = i = 1 2 d X i e i K i X i i = 3 4 d X i e i K i X i T ψ ( X 3 ) ψ ( X 4 ) ψ ( X 1 ) ψ ( X 2 ) = ( 2 π ) 8 δ ( K 1 K 3 ) δ ( K 2 K 4 ) G ( K 1 ) G ( K 2 ) = ( 2 π ) 8 δ ( K 1 K 4 ) δ ( K 2 K 3 ) G ( K 1 ) G ( K 2 ) + = ( 2 π ) 4 δ ( K 1 + K 2 K 3 K 4 ) G ( K 1 ) G ( K 2 ) G ( K 3 ) G ( K 4 ) i Γ ( K 3 , K 4 ; K 1 , K 2 ) . {\displaystyle {\begin{aligned}\Gamma _{(K_{3},K_{4};K_{1},K_{2})}&=\int {\prod _{i=1}^{2}{dX_{i}\,e^{iK_{i}X_{i}}}\prod _{i=3}^{4}{dX_{i}\,e^{-iK_{i}X_{i}}}\langle T\psi ^{\dagger }(X_{3})\psi ^{\dagger }(X_{4})\psi (X_{1})\psi (X_{2})\rangle }\\&=(2\pi )^{8}\delta (K_{1}-K_{3})\delta (K_{2}-K_{4})G(K_{1})G(K_{2})-{}\\&{\phantom {{}={}}}(2\pi )^{8}\delta (K_{1}-K_{4})\delta (K_{2}-K_{3})G(K_{1})G(K_{2})+{}\\&{\phantom {{}={}}}(2\pi )^{4}\delta ({K_{1}+K_{2}-K_{3}-K_{4}})G(K_{1})G(K_{2})G(K_{3})G(K_{4})i\Gamma _{(K_{3},K_{4};K_{1},K_{2})}{\text{.}}\end{aligned}}} Call the momentum transfer K = ( k 0 , k ) = K 1 K 3 . {\displaystyle K'=(k'_{0},{\vec {k'}})=K_{1}-K_{3}{\text{.}}} When K {\textstyle K'} is very small (the regime of interest here), the T-channel dominates the S- and U-channels. The Dyson equation then offers a simpler description of the four-point vertex function in terms of the 2-particle irreducible Γ ~ {\textstyle {\tilde {\Gamma }}} , which corresponds to all diagrams connected after cutting two electron propagators: Γ K 3 , K 4 ; K 1 , K 2 = Γ ~ K 3 , K 4 ; K 1 , K 2 i Q Γ ~ K 3 , Q + K ; K 1 , Q G ( Q ) G ( Q + K ) Γ Q , K 4 ; Q + K , K 2 . {\displaystyle \Gamma _{K_{3},K_{4};K_{1},K_{2}}={\tilde {\Gamma }}_{K_{3},K_{4};K_{1},K_{2}}-i\sum _{Q}{\tilde {\Gamma }}_{K_{3},Q+K';K_{1},Q}G(Q)G(Q+K')\Gamma _{Q,K_{4};Q+K',K_{2}}{\text{.}}} Solving for Γ {\displaystyle \Gamma } shows that, in the similar-momentum, similar-wavelength limit k ω 1 {\textstyle k'\ll \omega '\ll 1} , the former tends towards an operator Γ K 1 , K 2 ω {\textstyle \Gamma _{K_{1},K_{2}}^{\omega }} satisfying L = Γ 1 ( Γ ω ) 1 , {\displaystyle L=\Gamma ^{-1}-(\Gamma ^{\omega })^{-1}{\text{,}}} where L Q + K , Q K ; Q , Q = i δ Q , Q δ K , K G ( Q ) G ( K + Q ) . {\displaystyle L_{Q''+K'',Q'-K';Q'',Q'}=-i\delta _{Q'',Q'}\delta _{K'',K'}G(Q')G(K'+Q'){\text{.}}} The normalized Landau parameter is defined in terms of Γ K 1 , K 2 ω {\textstyle \Gamma _{K_{1},K_{2}}^{\omega }} as f k k = Z 2 N Γ ω ( ( ϵ F , k ) , ( ϵ F , k ) ) , {\displaystyle f_{kk'}=Z^{2}N\Gamma ^{\omega }((\epsilon _{\rm {F}},{\vec {k}}),(\epsilon _{\rm {F}},{\vec {k'}})){\text{,}}} where N = p F m F π 2 {\textstyle N={\frac {p_{\mathrm {F} }m_{\mathrm {F} }^{*}}{\pi ^{2}}}} is the density of Fermi surface states. In the Legendre eigenbasis { P } {\textstyle \{P_{\ell }\}_{\ell }} , the parameter f {\textstyle f} admits the expansion f p F k ^ , p F k ^ = = 0 P ( k ^ k ^ ) f . {\displaystyle f_{p_{\rm {F}}{\hat {k}},p_{\rm {F}}{\hat {k'}}}=\sum _{\ell =0}^{\infty }{P_{\ell }({\hat {k}}\cdot {\hat {k'}})f_{\ell }}{\text{.}}} Pomeranchuk's analysis revealed that each f {\textstyle f_{\ell }} cannot be very negative.

Stability criterion

In a 3D isotropic Fermi liquid, consider small density fluctuations δ n k = Θ ( | k | p F ) Θ ( | k | p F ( k ^ ) ) {\textstyle \delta n_{k}=\Theta (|k|-p_{\mathrm {F} })-\Theta (|k|-p_{\mathrm {F} }'({\hat {k}}))} around the Fermi momentum p F {\textstyle p_{\mathrm {F} }} , where the shift in Fermi surface expands in spherical harmonics as p F ( k ^ ) = l = 0 Y l , m ( k ^ ) δ ϕ l m . {\displaystyle p_{\rm {F}}'({\hat {k}})=\sum _{l=0}^{\infty }Y_{l,m}({\hat {k}})\delta \phi _{lm}{\text{.}}} The energy associated with a perturbation is approximated by the functional E = k ϵ k δ n k + k , k 1 2 N V f k k δ n k δ n k {\displaystyle E=\sum _{\vec {k}}\epsilon _{\vec {k}}\delta n_{\vec {k}}+\sum _{{\vec {k}},{\vec {k'}}}{{\frac {1}{2NV}}f_{{\vec {k}}{\vec {k'}}}\delta n_{\vec {k}}\delta n_{\vec {k'}}}} where ϵ k = v F ( | k | p F ) {\textstyle {\vec {\epsilon _{k}}}=v_{\mathrm {F} }(|{\vec {k}}|-p_{\mathrm {F} })} . Assuming | δ ϕ l m | | p F | {\textstyle |\delta \phi _{lm}|\ll |p_{\rm {F}}|} , these terms are, k ϵ k δ n k = 2 ( 2 π ) 3 d 2 k ^ p F p F ( k ^ ) v F ( p p F ) p 2 d p = p F 2 v F ( 2 π ) 3 l m ( δ ϕ l m ) 2 4 π 2 l + 1 ( l + m ) ! ( l m ) ! k , k f k k δ n k δ n k = 2 p F 4 ( 2 π ) 6 d 2 k ^ d 2 k ^ ( p F ( k ^ ) p F ) ( p F ( k ^ ) F ) f p F k ^ , p F k ^ {\displaystyle {\begin{aligned}&\sum _{k}\epsilon _{k}\delta n_{k}={\frac {2}{(2\pi )^{3}}}\int d^{2}{\hat {k}}\int _{p_{\rm {F}}}^{p_{\rm {F}}'({\hat {k}})}v_{\rm {F}}(p'-p_{\rm {F}})p'^{2}dp'={\frac {p_{\rm {F}}^{2}v_{\rm {F}}}{(2\pi )^{3}}}\sum _{lm}(\delta \phi _{lm})^{2}{\frac {4\pi }{2l+1}}{\frac {(l+m)!}{(l-m)!}}\\&\sum _{k,k'}f_{kk'}\delta n_{k}\delta n_{k'}={\frac {2p_{\rm {F}}^{4}}{(2\pi )^{6}}}\int d^{2}{\hat {k}}d^{2}{\hat {k'}}(p_{\rm {F}}'({\hat {k}})-p_{\rm {F}})(p_{\rm {F}}'({\hat {k'}})_{\rm {F}})f_{p_{\rm {F}}{\hat {k}},p_{\rm {F}}{\hat {k'}}}\end{aligned}}} and so E = p F 2 v F 2 ( π ) 2 l m ( δ ϕ l m ) 2 ( l + m ) ! ( 2 l + 1 ) ( l m ) ! ( 1 + f l 2 l + 1 ) . {\displaystyle E={\frac {p_{\rm {F}}^{2}v_{\rm {F}}}{2(\pi )^{2}}}\sum _{lm}(\delta \phi _{lm})^{2}{\frac {(l+m)!}{(2l+1)(l-m)!}}\left(1+{\frac {f_{l}}{2l+1}}\right){\text{.}}}

When the Pomeranchuk stability criterion f l > ( 2 l + 1 ) {\displaystyle f_{l}>-(2l+1)} is satisfied, this value is positive, and the Fermi surface distortion δ ϕ l m {\textstyle \delta \phi _{lm}} requires energy to form. Otherwise, δ ϕ l m {\textstyle \delta \phi _{lm}} releases energy, and will grow without bound until the model breaks down. That process is known as Pomeranchuk instability.

In 2D, a similar analysis, with circular wave fluctuations e i l θ {\textstyle \propto e^{il\theta }} instead of spherical harmonics and Chebyshev polynomials instead of Legendre polynomials, shows the Pomeranchuk constraint to be f l > 1 {\textstyle f_{l}>-1} . In anisotropic materials, the same qualitative result is true—for sufficiently negative Landau parameters, unstable fluctuations spontaneously destroy the Fermi surface.

The point at which F l = ( 2 l + 1 ) {\displaystyle F_{l}=-(2l+1)} is of much theoretical interest as it indicates a quantum phase transition from a Fermi liquid to a different state of matter Above zero temperature a quantum critical state exists.

Physical quantities with manifest Pomeranchuk criterion

Many physical quantities in Fermi liquid theory are simple expressions of components of Landau parameters. A few standard ones are listed here; they diverge or become unphysical beyond the quantum critical point.

Isothermal compressibility: κ = 1 V V P = N / n 2 1 + f 0 {\displaystyle \kappa =-{\frac {1}{V}}{\frac {\partial V}{\partial P}}={\frac {N/n^{2}}{1+f_{0}}}}

Effective mass: m = p F v F = m ( 1 + f 1 / 3 ) {\displaystyle m^{*}={\frac {p_{\rm {F}}}{v_{\rm {F}}}}=m(1+f_{1}/3)}

Speed of first sound: C = p F 2 ( 1 + f 0 ) m 2 ( 3 + f 1 ) {\displaystyle C={\sqrt {\frac {p_{\rm {F}}^{2}(1+f_{0})}{m^{2}(3+f_{1})}}}}

Unstable zero sound modes

The Pomeranchuk instability manifests in the dispersion relation for the zeroth sound, which describes how the localized fluctuations of the momentum density function δ n k {\textstyle \delta n_{k}} propagate through space and time.

Just as the quasiparticle dispersion is given by the pole of the one-particle propagator, the zero sound dispersion relation is given by the pole of the T-channel of the vertex function Γ ( K 3 , K 4 ; K 1 , K 2 ) {\textstyle \Gamma (K_{3},K_{4};K_{1},K_{2})} near small K 1 K 3 {\textstyle K_{1}-K_{3}} . Physically, this describes the propagation of an electron hole pair, which is responsible for the fluctuations in δ n k {\textstyle \delta n_{k}} .

From the relation Γ = ( ( Γ ω ) 1 L ) 1 {\textstyle \Gamma =((\Gamma ^{\omega })^{-1}-L)^{-1}} and ignoring the contributions of f {\textstyle f_{\ell }} for > 0 {\textstyle \ell >0} , the zero sound spectrum is given by the four-vectors K = ( ω ( k ) , k ) {\displaystyle K'=(\omega ({\vec {k'}}),{\vec {k'}})} satisfying Z 2 N f 0 = i Q G ( Q + K ) G ( Q + K ) . {\displaystyle {\frac {Z^{2}N}{f_{0}}}=-i\sum _{Q}G(Q+K')G(Q+K){\text{.}}} Equivalently,

1 f 0 = Φ ( s , x ) = ( s x / 2 ) 2 1 4 x ln ( ( s x / 2 ) + 1 ( s x / 2 ) 1 ) ( s + x / 2 ) 2 1 4 x ln ( ( s + x / 2 ) + 1 ( s + x / 2 ) 1 ) + 1 2 {\displaystyle {\frac {-1}{f_{0}}}=\Phi (s,x)={\frac {(s-x/2)^{2}-1}{4x}}\ln {\!\left({\frac {(s-x/2)+1}{(s-x/2)-1}}\right)}-{\frac {(s+x/2)^{2}-1}{4x}}\ln {\!\left({\frac {(s+x/2)+1}{(s+x/2)-1}}\right)}+{\frac {1}{2}}} 1

where s = ω ( k ) | k | p F {\textstyle s={\frac {\omega ({\vec {k}})}{|{\vec {k}}|p_{\rm {F}}}}} and x = | k | p F {\textstyle x={\frac {|k|}{p_{\rm {F}}}}} .

When f 0 > 0 {\displaystyle f_{0}>0} , the equation (1) can be implicitly solved for a real solution s ( x ) {\displaystyle s(x)} , corresponding to a real dispersion relation of oscillatory waves.

When f 0 < 0 {\displaystyle f_{0}<0} , the solution s ( x ) {\displaystyle s(x)} is pure imaginary, corresponding to an exponential change in amplitude over time. For 1 < f 0 < 0 {\displaystyle -1<f_{0}<0} , the imaginary part ( s ( x ) ) < 0 {\displaystyle \Im (s(x))<0} , damping waves of zeroth sound. But for 1 > f 0 {\displaystyle -1>f_{0}} and sufficiently small x {\displaystyle x} , the imaginary part ( s ( x ) ) > 0 {\displaystyle \Im (s(x))>0} , implying exponential growth of any low-momentum zero sound perturbation.

Nematic phase transition

Pomeranchuk instabilities in non-relativistic systems at l = 1 {\displaystyle l=1} cannot exist. However, instabilities at l = 2 {\displaystyle l=2} have interesting solid state applications. From the form of spherical harmonics Y 2 , m ( θ , ϕ ) {\displaystyle Y_{2,m}(\theta ,\phi )} (or e 2 i θ {\displaystyle e^{2i\theta }} in 2D), the Fermi surface is distorted into an ellipsoid (or ellipse). Specifically, in 2D, the quadrupole moment order parameter Q ~ ( q ) = k e 2 i θ q ψ k + q ψ k {\displaystyle {\tilde {Q}}(q)=\sum _{k}e^{2i\theta _{q}}\psi _{k+q}^{\dagger }\psi _{k}} has nonzero vacuum expectation value in the l = 2 {\displaystyle l=2} Pomeranchuk instability. The Fermi surface has eccentricity | Q ~ ( 0 ) | {\displaystyle |\langle {\tilde {Q}}(0)\rangle |} and spontaneous major axis orientation θ = arg ( Q ~ ( 0 ) ) {\displaystyle \theta =\arg(\langle {\tilde {Q}}(0)\rangle )} . Gradual spatial variation in θ ( r ) {\displaystyle \theta ({\vec {r}})} forms gapless Goldstone modes, forming a nematic liquid statistically analogous to a liquid crystal. Oganesyan et al.'s analysis of a model interaction between quadrupole moments predicts damped zero sound fluctuations of the quadrupole moment condensate for waves oblique to the ellipse axes.

The 2d square tight-binding Hubbard Hamiltonian with next-to-nearest neighbour interaction has been found by Halboth and Metzner to display instability in susceptibility of d-wave fluctuations under renormalization group flow. Thus, the Pomeranchuk instability is suspected to explain the experimentally measured anisotropy in cuprate superconductors such as LSCO and YBCO.

See also

References

  1. ^ Lifshitz, E.M. and Pitaevskii, L.P., Statistical Physics, Part 2 (Pergamon, 1980)
  2. ^ Kolomeitsev, E. E.; Voskresensky, D. N. (2016). "Scalar quanta in Fermi liquids: Zero sounds, instabilities, Bose condensation, and a metastable state in dilute nuclear matter". The European Physical Journal A. 52 (12). Springer Nature: 362. arXiv:1610.09748. Bibcode:2016EPJA...52..362K. doi:10.1140/epja/i2016-16362-0. ISSN 1434-6001.
  3. Pomeranchuk, I. Ya., Sov.Phys.JETP,8,361 (1958)
  4. Reidy, K. E. Fermi liquids near Pomeranchuk instabilities. Diss. Kent State University, 2014.
  5. Nilsson, Johan; Castro Neto, A. H. (2005-11-14). "Heat bath approach to Landau damping and Pomeranchuk quantum critical points". Physical Review B. 72 (19). American Physical Society (APS): 195104. arXiv:cond-mat/0506146. Bibcode:2005PhRvB..72s5104N. doi:10.1103/physrevb.72.195104. ISSN 1098-0121.
  6. Baym, G., and Pethick, Ch., Landau Fermi-Liquid Theory (Wiley-VCH, Weinheim, 2004, 2nd. Edition).
  7. Kiselev, Egor I.; Scheurer, Mathias S.; Wölfle, Peter; Schmalian, Jörg (2017-03-20). "Limits on dynamically generated spin-orbit coupling: Absence ofl=1Pomeranchuk instabilities in metals". Physical Review B. 95 (12). American Physical Society (APS): 125122. arXiv:1611.01442. Bibcode:2017PhRvB..95l5122K. doi:10.1103/physrevb.95.125122. ISSN 2469-9950.
  8. Oganesyan, Vadim; Kivelson, Steven A.; Fradkin, Eduardo (2001-10-17). "Quantum theory of a nematic Fermi fluid". Physical Review B. 64 (19). American Physical Society (APS): 195109. arXiv:cond-mat/0102093. Bibcode:2001PhRvB..64s5109O. doi:10.1103/physrevb.64.195109. ISSN 0163-1829.
  9. Halboth, Christoph J.; Metzner, Walter (2000-12-11). "d-Wave Superconductivity and Pomeranchuk Instability in the Two-Dimensional Hubbard Model". Physical Review Letters. 85 (24). American Physical Society (APS): 5162–5165. arXiv:cond-mat/0003349. Bibcode:2000PhRvL..85.5162H. doi:10.1103/physrevlett.85.5162. ISSN 0031-9007.
  10. Kitatani, Motoharu; Tsuji, Naoto; Aoki, Hideo (2017-02-03). "Interplay of Pomeranchuk instability and superconductivity in the two-dimensional repulsive Hubbard model". Physical Review B. 95 (7). American Physical Society (APS): 075109. arXiv:1609.05759. Bibcode:2017PhRvB..95g5109K. doi:10.1103/physrevb.95.075109. ISSN 2469-9950.
Category:
Pomeranchuk instability Add topic