This is an old revision of this page, as edited by 202.92.35.71 (talk) at 00:57, 17 November 2011 (→Therapeutic use - hyperdopaminergia is a keyword that should have its own page). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Revision as of 00:57, 17 November 2011 by 202.92.35.71 (talk) (→Therapeutic use - hyperdopaminergia is a keyword that should have its own page)(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff) Pharmaceutical compoundClinical data | |
---|---|
Pregnancy category |
|
Routes of administration | oral |
ATC code | |
Legal status | |
Legal status |
|
Pharmacokinetic data | |
Bioavailability | 30% |
Metabolism | Aromatic-L-amino-acid decarboxylase |
Elimination half-life | 0.75–1.5 hours |
Excretion | renal 70–80% |
Identifiers | |
IUPAC name
| |
CAS Number | |
PubChem CID | |
DrugBank | |
ChemSpider | |
UNII | |
KEGG | |
ChEBI | |
ChEMBL | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.000.405 |
Chemical and physical data | |
Formula | C9H11NO4 |
Molar mass | 197.19 g/mol g·mol |
3D model (JSmol) | |
SMILES
| |
InChI
| |
(what is this?) (verify) |
L-DOPA (L-3,4-dihydroxyphenylalanine) is a chemical that is made and used as part of the normal biology of some animals and plants. Some animals including humans make it via biosynthesis from the amino acid L-tyrosine. L-DOPA is the precursor to the neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline) collectively known as catecholamines. L-DOPA can be manufactured and in its pure form is sold as a psychoactive drug with the INN levodopa; trade names include Sinemet, Parcopa, Atamet, Stalevo, Madopar, Prolopa, etc.). As a drug it is used in the clinical treatment of Parkinson's disease and dopamine-responsive dystonia.
Therapeutic use
L-DOPA crosses the protective blood-brain barrier, whereas dopamine itself cannot. Thus, L-DOPA is used to increase dopamine concentrations in the treatment of Parkinson's disease and dopamine-responsive dystonia. This treatment was originally developed by George Cotzias and his coworkers. Once L-DOPA has entered the central nervous system, it is converted into dopamine by the enzyme aromatic L-amino acid decarboxylase, also known as DOPA decarboxylase (DDC). Pyridoxal phosphate (vitamin B6) is a required cofactor in this reaction, and may occasionally be administered along with L-DOPA, usually in the form of pyridoxine.
Besides the CNS, L-DOPA is also converted into dopamine from within the peripheral nervous system. The resulting hyperdopaminergia causes many of the adverse side effects seen with sole L-DOPA administration. In order to bypass these effects, it is standard clinical practice to co-administer (with L-DOPA) a peripheral DOPA decarboxylase inhibitor (DDCI) such as carbidopa (medicines combining L-DOPA and carbidopa are branded as Lodosyn, Sinemet, Parcopa, Atamet, Stalevo) or with a benserazide (combination medicines are branded Madopar, Prolopa), to prevent the peripheral synthesis of dopamine from L-DOPA. Co-administration of pyridoxine without a DDCI accelerates the peripheral decarboxylation of L-DOPA to such an extent that it negates the effects of L-DOPA administration, a phenomenon that historically caused great confusion.
In addition, L-DOPA, co-administered with a peripheral DDCI, has been investigated as a potential treatment for restless leg syndrome. However, studies have demonstrated "no clear picture of reduced symptoms".
There are two types of response seen with administration of L-DOPA:
- Short-duration response, which is related to the half-life of the drug
- Longer-duration response, which depends on the accumulation of effects over at least two weeks. This response is evident only in early therapy, as the inability of the brain to store dopamine is not yet a concern.
Dietary supplements
Herbal extracts containing L-DOPA are available. The most common plant source of L-DOPA marketed in this manner is Mucuna pruriens (Velvet Bean).
Biological role
L-DOPA is produced from the amino acid L-tyrosine by the enzyme tyrosine hydroxylase (TH). It is also the precursor for the monoamine or catecholamine neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline). Dopamine is formed by the decarboxylation of L-DOPA.
L-DOPA can be directly metabolized by catechol-O-methyl transferase (COMT) to 3-O-methyldopa (3-OMD), and then further to vanillactic acid (VLA). This metabolic pathway is non-existent in the healthy body, but becomes important after peripheral L-DOPA administration in patients with PD or in the rare cases of patients with aromatic L-amino acid decarboxylase (AADC) enzyme deficiency.
The prefix L- references its property of levorotation (compared with dextrorotation or D-DOPA).
L-Phenylalanine, L-tyrosine, and L-DOPA, are all are precursors to the biological pigment melanin. The enzyme tyrosinase catalyzes the oxidation of L-DOPA to the reactive intermediate dopaquinone, which reacts further, eventually leading to melanin oligomers.
Side effects
The side effects of L-DOPA may include, but not limited to:
- Hypotension, especially if the dosage is too high
- Arrhythmias, although these are uncommon
- Nausea, which is often reduced by taking the drug with food, although protein interferes with drug absorption
- Gastrointestinal bleeding
- Disturbed respiration, which is not always harmful, and can actually benefit patients with upper airway obstruction
- Hair loss
- Disorientation and confusion
- Extreme emotional states, particularly anxiety, but also excessive libido
- Vivid dreams and/or insomnia
- Auditory and/or visual hallucinations
- Effects on learning; there is some evidence that it improves working memory, while impairing other complex functions
- Somnolence and narcolepsy
- A condition similar to stimulant psychosis
Although there are many adverse effects associated with L-DOPA, in particular psychiatric ones, it has fewer than other antiparkinsonian agents, such as anticholinergics and dopamine receptor agonists.
More serious are the effects of chronic levodopa administration in the treatment of Parkinson disease, which include:
- End-of-dose deterioration of function
- On/off oscillations
- Freezing during movement
- Dose failure (drug resistance)
- Dyskinesia at peak dose
- Possible serotonin depletion: Recent studies have demonstrated that use of L-DOPA without simultaneously giving proper levels of serotonin precursors depletes serotonin
- Possible dopamine dysregulation: The long-term use of L-DOPA in PD has been linked to the so-called dopamine dysregulation syndrome.
Clinicians will try to avoid these side effects by limiting L-DOPA doses as much as possible until absolutely necessary.
Toxicity
Some scientific studies suggest a cytotoxic role in the promotion and occurrence of adverse effects associated with L-DOPA treatment. Though the drug is generally safe in humans, some researchers have reported an increase in cytotoxicity markers in rat pheochromocytoma PC12 cell lines treated with L-DOPA. Other authors have attributed the observed toxic effects of L-DOPA in neural dopamine cell lines to enhanced formation of quinones through increased auto-oxidation and subsequent cell death in mesencephalic cell cultures. Though L-DOPA is generally considered safe, some controversy surrounds its use in the treatment of PD, given some data indicating a deleterious effect on intracellular and neuronal tissue involved in the pathogenesis of the disease.
History
In work that earned him a Nobel Prize in 2000, Swedish scientist Arvid Carlsson first showed in the 1950s that administering L-DOPA to animals with Parkinsonian symptoms would cause a reduction in their intensity. This treatment was later extended to manganese poisoning and later Parkinsonism by George Cotzias and his coworkers, who greatly increased the dose. The neurologist Oliver Sacks describes this treatment in human patients with encephalitis lethargica in his book Awakenings, upon which the movie of the same name is based.
The 2001 Nobel Prize in Chemistry was also related to L-DOPA: the Nobel Committee awarded one-fourth of the prize to William S. Knowles for his work on chirally catalysed hydrogenation reactions, the most noted example of which was used for the synthesis of L-DOPA:
Marine adhesion
L-DOPA is a key compound in the formation of marine adhesive proteins, such as those found in mussels. It is believed to be responsible for the water-resistance and rapid curing abilities of these proteins. L-DOPA may also be used to prevent surfaces from fouling by bonding antifouling polymers to a susceptible substrate.
See also
- D-DOPA (Dextrodopa)
- L-DOPS (Droxidopa)
- Methyldopa (Aldomet, Apo-Methyldopa, Dopamet, Novomedopa, etc.)
- Dopamine (Intropan, Inovan, Revivan, Rivimine, Dopastat, Dynatra, etc.)
- Norepinephrine (Noradrenaline; Levophed, etc.)
- Epinephrine (Adrenaline; Adrenalin, EpiPen, Twinject, etc.)
References
- "L-dopa for RLS". Bandolier. 1 April 2007. Retrieved 2008-10-16.
- http://students.cis.uab.edu/porce/page4.html
- Hyland K, Clayton PT (1992). "Aromatic L-amino acid decarboxylase deficiency: diagnostic methodology" (PDF). Clinical chemistry. 38 (12): 2405–10. PMID 1281049.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Merims D, Giladi N (2008). "Dopamine dysregulation syndrome, addiction and behavioral changes in Parkinson's disease". Parkinsonism Relat Disord. 14 (4): 273–280. doi:10.1016/j.parkreldis.2007.09.007. PMID 17988927.
- Cheng N, Maeda T, Kume T; et al. (1996). "Differential neurotoxicity induced by L-DOPA and dopamine in cultured striatal neurons". Brain research. 743 (1–2): 278–83. doi:10.1016/S0006-8993(96)01056-6. PMID 9017256.
{{cite journal}}
: Explicit use of et al. in:|author=
(help); Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Basma AN, Morris EJ, Nicklas WJ, Geller HM (1995). "L-dopa cytotoxicity to PC12 cells in culture is via its autoxidation". Journal of neurochemistry. 64 (2): 825–32. doi:10.1046/j.1471-4159.1995.64020825.x. PMID 7830076.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Pardo B, Mena MA, Casarejos MJ, Paíno CL, De Yébenes JG (1995). "Toxic effects of L-DOPA on mesencephalic cell cultures: protection with antioxidants". Brain research. 682 (1–2): 133–43. doi:10.1016/0006-8993(95)00341-M. PMID 7552304.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Mytilineou C, Han SK, Cohen G (1993). "Toxic and protective effects of L-dopa on mesencephalic cell cultures". Journal of neurochemistry. 61 (4): 1470–8. doi:10.1111/j.1471-4159.1993.tb13642.x. PMID 8376999.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - Simuni T, Stern MB (1999). "Does levodopa accelerate Parkinson's disease?". Drugs & aging. 14 (6): 399–408. doi:10.2165/00002512-199914060-00001. PMID 10408739.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - Cotzias, GC; Papavasiliou, PS; Gellene, R (1969). "L-dopa in parkinson's syndrome". The New England journal of medicine. 281 (5): 272. doi:10.1056/NEJM196907312810518. PMID 5791298.
{{cite journal}}
: Cite has empty unknown parameter:|author-name-separator=
(help); Unknown parameter|author-separator=
ignored (help)
- Waite, J. Herbert; et al. (2005). "Mussel Adhesion: Finding the Tricks Worth Mimicking". J Adhesion. 81: 1–21. doi:10.1080/00218460590944602.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - Messersmith, Phillip B.; et al. (2006). "Rapid Gel Formation and Adhesion in Photocurable and Biodegradable Block Copolymers with High DOPA Content". Macromolecules. 39: 1740–1748. doi:10.1021/ma0518959.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)
External links
Antiparkinson agents (N04) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dopaminergics |
| ||||||||||
Anticholinergics | |||||||||||
Others |
| ||||||||||
|
Encoded (proteinogenic) amino acids | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
General topics | |||||||||||
By properties |
| ||||||||||
Metabolism: Protein metabolism, synthesis and catabolism enzymes | |||||||||
---|---|---|---|---|---|---|---|---|---|
Essential amino acids are in Capitals | |||||||||
K→acetyl-CoA |
| ||||||||
G |
Neurotransmitter metabolic intermediates | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Catecholamines |
| ||||||||||
Tryptophan→Serotonin |
| ||||||||||
Serotonin→Melatonin | |||||||||||
Trace amines | |||||||||||
GABA |
Dopamine receptor modulators | |||||||
---|---|---|---|---|---|---|---|
D1-like |
| ||||||
D2-like |
| ||||||