Misplaced Pages

Hebesphenomegacorona

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
89th Johnson solid (21 faces)
Hebesphenomegacorona
TypeJohnson
J88J89J90
Faces3x2+3x4 triangles
1+2 squares
Edges33
Vertices14
Vertex configuration4(3.4)
2+2x2(3)
4(3.4)
Symmetry groupC2v
Propertiesconvex, elementary
Net
3D model of a hebesphenomegacorona

In geometry, the hebesphenomegacorona is a Johnson solid with 18 equilateral triangles and 3 squares as its faces.

Properties

The hebesphenomegacorona is named by Johnson (1966) in which he used the prefix hebespheno- referring to a blunt wedge-like complex formed by three adjacent lunes—a square with equilateral triangles attached on its opposite sides. The suffix -megacorona refers to a crownlike complex of 12 triangles. By joining both complexes together, the result polyhedron has 18 equilateral triangles and 3 squares, making 21 faces.. All of its faces are regular polygons, categorizing the hebesphenomegacorona as a Johnson solid—a convex polyhedron in which all of its faces are regular polygons—enumerated as 89th Johnson solid J 89 {\displaystyle J_{89}} . It is an elementary polyhedron, meaning it cannot be separated by a plane into two small regular-faced polyhedra.

The surface area of a hebesphenomegacorona with edge length a {\displaystyle a} can be determined by adding the area of its faces, 18 equilateral triangles and 3 squares 6 + 9 3 2 a 2 10.7942 a 2 , {\displaystyle {\frac {6+9{\sqrt {3}}}{2}}a^{2}\approx 10.7942a^{2},} and its volume is 2.9129 a 3 {\displaystyle 2.9129a^{3}} .

Cartesian coordinates

Let a 0.21684 {\displaystyle a\approx 0.21684} be the second smallest positive root of the polynomial 26880 x 10 + 35328 x 9 25600 x 8 39680 x 7 + 6112 x 6 + 13696 x 5 + 2128 x 4 1808 x 3 1119 x 2 + 494 x 47 {\displaystyle {\begin{aligned}&26880x^{10}+35328x^{9}-25600x^{8}-39680x^{7}+6112x^{6}\\&\quad {}+13696x^{5}+2128x^{4}-1808x^{3}-1119x^{2}+494x-47\end{aligned}}} Then, Cartesian coordinates of a hebesphenomegacorona with edge length 2 are given by the union of the orbits of the points ( 1 , 1 , 2 1 a 2 ) ,   ( 1 + 2 a , 1 , 0 ) ,   ( 0 , 1 + 2 2 a 1 a 1 , 2 a 2 + a 1 1 a 2 ) ,   ( 1 , 0 , 3 4 a 2 ) , ( 0 , 2 ( 3 4 a 2 ) ( 1 2 a ) + 1 + a 2 ( 1 a ) 1 + a , ( 2 a 1 ) 3 4 a 2 2 ( 1 a ) 2 ( 1 2 a ) 2 ( 1 a ) 1 + a ) {\displaystyle {\begin{aligned}&\left(1,1,2{\sqrt {1-a^{2}}}\right),\ \left(1+2a,1,0\right),\ \left(0,1+{\sqrt {2}}{\sqrt {\frac {2a-1}{a-1}}},-{\frac {2a^{2}+a-1}{\sqrt {1-a^{2}}}}\right),\ \left(1,0,-{\sqrt {3-4a^{2}}}\right),\\&\left(0,{\frac {{\sqrt {2(3-4a^{2})(1-2a)}}+{\sqrt {1+a}}}{2(1-a){\sqrt {1+a}}}},{\frac {(2a-1){\sqrt {3-4a^{2}}}}{2(1-a)}}-{\frac {\sqrt {2(1-2a)}}{2(1-a){\sqrt {1+a}}}}\right)\end{aligned}}} under the action of the group generated by reflections about the xz-plane and the yz-plane.

References

  1. Johnson, N. W. (1966). "Convex polyhedra with regular faces". Canadian Journal of Mathematics. 18: 169–200. doi:10.4153/cjm-1966-021-8. MR 0185507. S2CID 122006114. Zbl 0132.14603.
  2. ^ Berman, M. (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR 0290245.
  3. Francis, D. (August 2013). "Johnson solids & their acronyms". Word Ways. 46 (3): 177.
  4. Cromwell, P. R. (1997). Polyhedra. Cambridge University Press. p. 86–87, 89. ISBN 978-0-521-66405-9.
  5. Timofeenko, A. V. (2009). "The non-Platonic and non-Archimedean noncomposite polyhedra". Journal of Mathematical Science. 162 (5): 717. doi:10.1007/s10958-009-9655-0. S2CID 120114341.

External links

Johnson solids
Pyramids, cupolae and rotundae
Modified pyramids
Modified cupolae and rotundae
Augmented prisms
Modified Platonic solids
Modified Archimedean solids
Other elementary solids
(See also List of Johnson solids, a sortable table)
Stub icon

This polyhedron-related article is a stub. You can help Misplaced Pages by expanding it.

Categories:
Hebesphenomegacorona Add topic