Misplaced Pages

Metabigyrate rhombicosidodecahedron

Article snapshot taken from[REDACTED] with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
74th Johnson solid
Metabigyrate rhombicosidodecahedron
TypeJohnson
J73J74J75
Faces4x2+3x4 triangles
2+2x2+6x4 squares
4x2+4 pentagons
Edges120
Vertices60
Vertex configuration5.4(3.4.5)
4x2+8x4(3.4.5.4)
Symmetry groupC2v
Dual polyhedron-
Propertiesconvex, canonical
Net

In geometry, the metabigyrate rhombicosidodecahedron is one of the Johnson solids (J74). It can be constructed as a rhombicosidodecahedron with two non-opposing pentagonal cupolae rotated through 36 degrees. It is also a canonical polyhedron.

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids, Archimedean solids, prisms, or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966.

Alternative Johnson solids, constructed by rotating different cupolae of a rhombicosidodecahedron, are:

External links

Johnson solids
Pyramids, cupolae and rotundae
Modified pyramids
Modified cupolae and rotundae
Augmented prisms
Modified Platonic solids
Modified Archimedean solids
Other elementary solids
(See also List of Johnson solids, a sortable table)
Stub icon

This polyhedron-related article is a stub. You can help Misplaced Pages by expanding it.

  1. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics, 18: 169–200, doi:10.4153/cjm-1966-021-8, MR 0185507, Zbl 0132.14603.
Categories:
Metabigyrate rhombicosidodecahedron Add topic